Sensitivity of the “intermediate point” in the mean value theorem: an approach via the Legendre-Fenchel transformation
ESAIM. Proceedings, Tome 71 (2021), pp. 114-120
Cet article a éte moissonné depuis la source EDP Sciences
We study the sensitivity, essentially the differentiability, of the so-called “intermediate point” c in the classical mean value theorem we provide the expression of its gradient ∇c(d,d), thus giving the asymptotic behavior of c(a, b) when both a and b tend to the same point d. Under appropriate mild conditions on f, this result is “universal” in the sense that it does not depend on the point d or the function f. The key tool to get at this result turns out to be the Legendre-Fenchel transformation for convex functions.
@article{EP_2021_71_a10,
author = {Jean-Baptiste Hiriart-Urruty},
title = {Sensitivity of the {\textquotedblleft}intermediate point{\textquotedblright} in the mean value theorem: an approach via the {Legendre-Fenchel} transformation},
journal = {ESAIM. Proceedings},
pages = {114--120},
year = {2021},
volume = {71},
doi = {10.1051/proc/202171114},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202171114/}
}
TY - JOUR AU - Jean-Baptiste Hiriart-Urruty TI - Sensitivity of the “intermediate point” in the mean value theorem: an approach via the Legendre-Fenchel transformation JO - ESAIM. Proceedings PY - 2021 SP - 114 EP - 120 VL - 71 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/202171114/ DO - 10.1051/proc/202171114 LA - en ID - EP_2021_71_a10 ER -
%0 Journal Article %A Jean-Baptiste Hiriart-Urruty %T Sensitivity of the “intermediate point” in the mean value theorem: an approach via the Legendre-Fenchel transformation %J ESAIM. Proceedings %D 2021 %P 114-120 %V 71 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/202171114/ %R 10.1051/proc/202171114 %G en %F EP_2021_71_a10
Jean-Baptiste Hiriart-Urruty. Sensitivity of the “intermediate point” in the mean value theorem: an approach via the Legendre-Fenchel transformation. ESAIM. Proceedings, Tome 71 (2021), pp. 114-120. doi: 10.1051/proc/202171114
Cité par Sources :