Box-constrained optimization for minimax supervised learning
ESAIM. Proceedings, Tome 71 (2021), pp. 101-113
Cet article a éte moissonné depuis la source EDP Sciences
In this paper, we present the optimization procedure for computing the discrete boxconstrained minimax classifier introduced in [1, 2]. Our approach processes discrete or beforehand discretized features. A box-constrained region defines some bounds for each class proportion independently. The box-constrained minimax classifier is obtained from the computation of the least favorable prior which maximizes the minimum empirical risk of error over the box-constrained region. After studying the discrete empirical Bayes risk over the probabilistic simplex, we consider a projected subgradient algorithm which computes the prior maximizing this concave multivariate piecewise affine function over a polyhedral domain. The convergence of our algorithm is established.
Affiliations des auteurs :
Cyprien Gilet 1 ; Susana Barbosa 2 ; Lionel Fillatre 1
@article{EP_2021_71_a9,
author = {Cyprien Gilet and Susana Barbosa and Lionel Fillatre},
title = {Box-constrained optimization for minimax supervised learning},
journal = {ESAIM. Proceedings},
pages = {101--113},
year = {2021},
volume = {71},
doi = {10.1051/proc/202171109},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202171109/}
}
TY - JOUR AU - Cyprien Gilet AU - Susana Barbosa AU - Lionel Fillatre TI - Box-constrained optimization for minimax supervised learning JO - ESAIM. Proceedings PY - 2021 SP - 101 EP - 113 VL - 71 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/202171109/ DO - 10.1051/proc/202171109 LA - en ID - EP_2021_71_a9 ER -
Cyprien Gilet; Susana Barbosa; Lionel Fillatre. Box-constrained optimization for minimax supervised learning. ESAIM. Proceedings, Tome 71 (2021), pp. 101-113. doi: 10.1051/proc/202171109
Cité par Sources :