Penalty function method for the minimal time crisis problem
ESAIM. Proceedings, Tome 71 (2021), pp. 21-32
Cet article a éte moissonné depuis la source EDP Sciences
In this note, we propose a new method to approximate the minimal time crisis problem using an auxiliary control and a penalty function, and show its convergence to a solution to the original problem. The interest of this approach is illustrated on numerical examples for which optimal trajectories can leave and enter the crisis set tangentially.
Affiliations des auteurs :
Kenza Boumaza 1 ; Térence Bayen 2 ; Alain Rapaport 1
@article{EP_2021_71_a3,
author = {Kenza Boumaza and T\'erence Bayen and Alain Rapaport},
title = {Penalty function method for the minimal time crisis problem},
journal = {ESAIM. Proceedings},
pages = {21--32},
year = {2021},
volume = {71},
doi = {10.1051/proc/202171103},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202171103/}
}
TY - JOUR AU - Kenza Boumaza AU - Térence Bayen AU - Alain Rapaport TI - Penalty function method for the minimal time crisis problem JO - ESAIM. Proceedings PY - 2021 SP - 21 EP - 32 VL - 71 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/202171103/ DO - 10.1051/proc/202171103 LA - en ID - EP_2021_71_a3 ER -
Kenza Boumaza; Térence Bayen; Alain Rapaport. Penalty function method for the minimal time crisis problem. ESAIM. Proceedings, Tome 71 (2021), pp. 21-32. doi: 10.1051/proc/202171103
Cité par Sources :