Partial differential equations for oceanic artificial intelligence
ESAIM. Proceedings, Tome 70 (2021), pp. 137-146.

Voir la notice de l'article provenant de la source EDP Sciences

The Sea Surface Temperature (SST) plays a significant role in analyzing and assessing the dynamics of weather and also biological systems. It has various applications such as weather forecasting or planning of coastal activities. On the one hand, standard physical methods for forecasting SST use coupled ocean- atmosphere prediction systems, based on the Navier-Stokes equations. These models rely on multiple physical hypotheses and do not optimally exploit the information available in the data.On the other hand, despite the availability of large amounts of data, direct applications of machine learning methods do not always lead to competitive state of the art results. Another approach is to combine these two methods: this is data-model coupling. The aim of this paper is to use a model in another domain. This model is based on a data-model coupling approach to simulate and predict SST. We first introduce the original model. Then, the modified model is described, to finish with some numerical results.
DOI : 10.1051/proc/202107009

Jules Guillot 1 ; Guillaume Koenig 2 ; Kadi Minbashian 3 ; Emmanuel Frénod 4 ; Héléne Flourent 1 ; Julien Brajard 5

1 LMBA/UMR 6205, University of South Brittany
2 MIO, University of Marseille
3 Numerical Analysis and Scientific Computing, Department of Mathematics, Technical University of Darmstadt
4 LMBA/UMR 6205, University of South Brittany and See-d, Vannes
5 LOCEAN, IPSL
@article{EP_2021_70_a9,
     author = {Jules Guillot and Guillaume Koenig and Kadi Minbashian and Emmanuel Fr\'enod and H\'el\'ene Flourent and Julien Brajard},
     title = {Partial differential equations for oceanic artificial intelligence},
     journal = {ESAIM. Proceedings},
     pages = {137--146},
     publisher = {mathdoc},
     volume = {70},
     year = {2021},
     doi = {10.1051/proc/202107009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202107009/}
}
TY  - JOUR
AU  - Jules Guillot
AU  - Guillaume Koenig
AU  - Kadi Minbashian
AU  - Emmanuel Frénod
AU  - Héléne Flourent
AU  - Julien Brajard
TI  - Partial differential equations for oceanic artificial intelligence
JO  - ESAIM. Proceedings
PY  - 2021
SP  - 137
EP  - 146
VL  - 70
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/202107009/
DO  - 10.1051/proc/202107009
LA  - en
ID  - EP_2021_70_a9
ER  - 
%0 Journal Article
%A Jules Guillot
%A Guillaume Koenig
%A Kadi Minbashian
%A Emmanuel Frénod
%A Héléne Flourent
%A Julien Brajard
%T Partial differential equations for oceanic artificial intelligence
%J ESAIM. Proceedings
%D 2021
%P 137-146
%V 70
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/202107009/
%R 10.1051/proc/202107009
%G en
%F EP_2021_70_a9
Jules Guillot; Guillaume Koenig; Kadi Minbashian; Emmanuel Frénod; Héléne Flourent; Julien Brajard. Partial differential equations for oceanic artificial intelligence. ESAIM. Proceedings, Tome 70 (2021), pp. 137-146. doi : 10.1051/proc/202107009. http://geodesic.mathdoc.fr/articles/10.1051/proc/202107009/

Cité par Sources :