1Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 bd 11 novembre 1918; F-69622 Villeur- banne cedex, France 2Irmar (UMR 6625), Université de Rennes 1, 263 avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
ESAIM. Proceedings, Tome 69 (2020), pp. 70-78
Cet article a éte moissonné depuis la source EDP Sciences
We study a model for compressible multiphase flows involving N non miscible barotopic phases where N is arbitrary. This model boils down to the barotropic Baer-Nunziato model when N = 2. We prove the weak hyperbolicity property, the non-strict convexity of the natural mathematical entropy, and the existence of a symmetric form.
@article{EP_2020_69_a5,
author = {Khaled Saleh and Nicolas Seguin},
title = {Some mathematical properties of a barotropic multiphase flow model},
journal = {ESAIM. Proceedings},
pages = {70--78},
year = {2020},
volume = {69},
doi = {10.1051/proc/202069070},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202069070/}
}
TY - JOUR
AU - Khaled Saleh
AU - Nicolas Seguin
TI - Some mathematical properties of a barotropic multiphase flow model
JO - ESAIM. Proceedings
PY - 2020
SP - 70
EP - 78
VL - 69
UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/202069070/
DO - 10.1051/proc/202069070
LA - en
ID - EP_2020_69_a5
ER -
%0 Journal Article
%A Khaled Saleh
%A Nicolas Seguin
%T Some mathematical properties of a barotropic multiphase flow model
%J ESAIM. Proceedings
%D 2020
%P 70-78
%V 69
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/202069070/
%R 10.1051/proc/202069070
%G en
%F EP_2020_69_a5
Khaled Saleh; Nicolas Seguin. Some mathematical properties of a barotropic multiphase flow model. ESAIM. Proceedings, Tome 69 (2020), pp. 70-78. doi: 10.1051/proc/202069070