Numerical approximation of general Lipschitz BSDEs with branching processes
ESAIM. Proceedings, Tome 65 (2019), pp. 309-329
Cet article a éte moissonné depuis la source EDP Sciences
We extend the branching process based numerical algorithm of Bouchard et al. [3], that is dedicated to semilinear PDEs (or BSDEs) with Lipschitz nonlinearity, to the case where the nonlinearity involves the gradient of the solution. As in [3], this requires a localization procedure that uses a priori estimates on the true solution, so as to ensure the well-posedness of the involved Picard iteration scheme, and the global convergence of the algorithm. When, the nonlinearity depends on the gradient, the later needs to be controlled as well. This is done by using a face-lifting procedure. Convergence of our algorithm is proved without any limitation on the time horizon. We also provide numerical simulations to illustrate the performance of the algorithm.
Affiliations des auteurs :
Bruno Bouchard 1 ; Xiaolu Tan 1 ; Xavier Warin 2
@article{EP_2019_65_a13,
author = {Bruno Bouchard and Xiaolu Tan and Xavier Warin},
title = {Numerical approximation of general {Lipschitz} {BSDEs} with branching processes},
journal = {ESAIM. Proceedings},
pages = {309--329},
year = {2019},
volume = {65},
doi = {10.1051/proc/201965309},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201965309/}
}
TY - JOUR AU - Bruno Bouchard AU - Xiaolu Tan AU - Xavier Warin TI - Numerical approximation of general Lipschitz BSDEs with branching processes JO - ESAIM. Proceedings PY - 2019 SP - 309 EP - 329 VL - 65 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201965309/ DO - 10.1051/proc/201965309 LA - en ID - EP_2019_65_a13 ER -
%0 Journal Article %A Bruno Bouchard %A Xiaolu Tan %A Xavier Warin %T Numerical approximation of general Lipschitz BSDEs with branching processes %J ESAIM. Proceedings %D 2019 %P 309-329 %V 65 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/201965309/ %R 10.1051/proc/201965309 %G en %F EP_2019_65_a13
Bruno Bouchard; Xiaolu Tan; Xavier Warin. Numerical approximation of general Lipschitz BSDEs with branching processes. ESAIM. Proceedings, Tome 65 (2019), pp. 309-329. doi: 10.1051/proc/201965309
Cité par Sources :