Numerical approximations of McKean anticipative backward stochastic differential equations arising in initial margin requirements
ESAIM. Proceedings, Tome 65 (2019), pp. 1-26
Cet article a éte moissonné depuis la source EDP Sciences
We introduce a new class of anticipative backward stochastic differential equations with a dependence of McKean type on the law of the solution, that we name MKABSDE. We provide existence and uniqueness results in a general framework with relatively general regularity assumptions on the coefficients. We show how such stochastic equations arise within the modern paradigm of derivative pricing where a central counterparty (CCP) requires the members to deposit variation and initial margins to cover their exposure. In the case when the initial margin is proportional to the Conditional Value-at-Risk (CVaR) of the contract price, we apply our general result to define the price as a solution of a MKABSDE. We provide several linear and non-linear simpler approximations, which we solve using different numerical (deterministic and Monte-Carlo) methods.
Affiliations des auteurs :
A. Agarwal 1 ; S. De Marco 2 ; E. Gobet 3 ; J. G. López-Salas 4 ; F. Noubiagain 5 ; A. Zhou 6
@article{EP_2019_65_a1,
author = {A. Agarwal and S. De Marco and E. Gobet and J. G. L\'opez-Salas and F. Noubiagain and A. Zhou},
title = {Numerical approximations of {McKean} anticipative backward stochastic differential equations arising in initial margin requirements},
journal = {ESAIM. Proceedings},
pages = {1--26},
year = {2019},
volume = {65},
doi = {10.1051/proc/201965001},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201965001/}
}
TY - JOUR AU - A. Agarwal AU - S. De Marco AU - E. Gobet AU - J. G. López-Salas AU - F. Noubiagain AU - A. Zhou TI - Numerical approximations of McKean anticipative backward stochastic differential equations arising in initial margin requirements JO - ESAIM. Proceedings PY - 2019 SP - 1 EP - 26 VL - 65 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201965001/ DO - 10.1051/proc/201965001 LA - en ID - EP_2019_65_a1 ER -
%0 Journal Article %A A. Agarwal %A S. De Marco %A E. Gobet %A J. G. López-Salas %A F. Noubiagain %A A. Zhou %T Numerical approximations of McKean anticipative backward stochastic differential equations arising in initial margin requirements %J ESAIM. Proceedings %D 2019 %P 1-26 %V 65 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/201965001/ %R 10.1051/proc/201965001 %G en %F EP_2019_65_a1
A. Agarwal; S. De Marco; E. Gobet; J. G. López-Salas; F. Noubiagain; A. Zhou. Numerical approximations of McKean anticipative backward stochastic differential equations arising in initial margin requirements. ESAIM. Proceedings, Tome 65 (2019), pp. 1-26. doi: 10.1051/proc/201965001
Cité par Sources :