Remark on the well-posedness of weakly dispersive equations
ESAIM. Proceedings, Tome 64 (2018), pp. 111-120.

Voir la notice de l'article provenant de la source EDP Sciences

We improve the results about the well-posedness of the regularized fractional dispersive equation (1 + Dxα)ut + ux + uux = 0 when 0 α ≤ 1. When #x03B1; 1, the existence and uniqueness of vanishing viscosity solution is proved.
DOI : 10.1051/proc/201864111

Jiao He 1 ; Youcef Mammeri 2, 3

1 Institut Camille Jordan, CNRS UMR 5208, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; e-mail: jiao.he@math.univ-lyon1.fr
2 Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Université de Picardie Jules Verne, 80069 Amiens, France
3 Institut de Génétique, Environnement et Protection des Plantes, INRA UMR 1349, 35650 Le Rheu, France; e-mail: youcef.mammeri@u-picardie.fr
@article{EP_2018_64_a8,
     author = {Jiao He and Youcef Mammeri},
     title = {Remark on the well-posedness of weakly dispersive equations},
     journal = {ESAIM. Proceedings},
     pages = {111--120},
     publisher = {mathdoc},
     volume = {64},
     year = {2018},
     doi = {10.1051/proc/201864111},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201864111/}
}
TY  - JOUR
AU  - Jiao He
AU  - Youcef Mammeri
TI  - Remark on the well-posedness of weakly dispersive equations
JO  - ESAIM. Proceedings
PY  - 2018
SP  - 111
EP  - 120
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201864111/
DO  - 10.1051/proc/201864111
LA  - en
ID  - EP_2018_64_a8
ER  - 
%0 Journal Article
%A Jiao He
%A Youcef Mammeri
%T Remark on the well-posedness of weakly dispersive equations
%J ESAIM. Proceedings
%D 2018
%P 111-120
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201864111/
%R 10.1051/proc/201864111
%G en
%F EP_2018_64_a8
Jiao He; Youcef Mammeri. Remark on the well-posedness of weakly dispersive equations. ESAIM. Proceedings, Tome 64 (2018), pp. 111-120. doi : 10.1051/proc/201864111. http://geodesic.mathdoc.fr/articles/10.1051/proc/201864111/

Cité par Sources :