Building and Auto-Tuning Computing Kernels: Experimenting with Boast and Starpu in the Gysela Code
ESAIM. Proceedings, Tome 63 (2018), pp. 152-178.

Voir la notice de l'article provenant de la source EDP Sciences

Modeling turbulent transport is a major goal in order to predict confinement performance in a tokamak plasma. The gyrokinetic framework considers a computational domain in five dimensions to look at kinetic issues in a plasma; this leads to huge computational needs. Therefore, optimization of the code is an especially important aspect, especially since coprocessors and complex manycore architectures are foreseen as building blocks for Exascale systems. This project aims to evaluate the applicability of two auto-tuning approaches with the BOAST and StarPU tools on the GYSELA code in order to circumvent performance portability issues. A specific computation intensive kernel is considered in order to evaluate the benefit of these methods. StarPU enables to match the performance and even sometimes outperform the hand-optimized version of the code while leaving scheduling choices to an automated process. BOAST on the other hand reveals to be well suited to get a gain in terms of execution time on four architectures. Speedups in-between 1.9 and 5.7 are obtained on a cornerstone computation intensive kernel.
DOI : 10.1051/proc/201863152

Julien Bigot 1 ; Virginie Grandgirard 2 ; Guillaume Latu 2 ; Jean-Francois Mehaut 3 ; Luís Felipe Millani 3 ; Chantal Passeron 2 ; Steven Quinito Masnada 3 ; Jérôme Richard 4 ; Brice Videau 5

1 Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
2 CEA, IRFM, F-13108 Saint-Paul-lez-Durance
3 Laboratoire d’Informatique de Grenoble/Université Grenoble Alpes
4 Univ. Lyon, Inria, CNRS, ENS de Lyon, Univ. Claude-Bernard Lyon 1, LIP
5 Laboratoire d’Informatique de Grenoble/CNRS
@article{EP_2018_63_a7,
     author = {Julien Bigot and Virginie Grandgirard and Guillaume Latu and Jean-Francois Mehaut and Lu{\'\i}s Felipe Millani and Chantal Passeron and Steven Quinito Masnada and J\'er\^ome Richard and Brice Videau},
     title = {Building and {Auto-Tuning} {Computing} {Kernels:} {Experimenting} with {Boast} and {Starpu} in the {Gysela} {Code}},
     journal = {ESAIM. Proceedings},
     pages = {152--178},
     publisher = {mathdoc},
     volume = {63},
     year = {2018},
     doi = {10.1051/proc/201863152},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201863152/}
}
TY  - JOUR
AU  - Julien Bigot
AU  - Virginie Grandgirard
AU  - Guillaume Latu
AU  - Jean-Francois Mehaut
AU  - Luís Felipe Millani
AU  - Chantal Passeron
AU  - Steven Quinito Masnada
AU  - Jérôme Richard
AU  - Brice Videau
TI  - Building and Auto-Tuning Computing Kernels: Experimenting with Boast and Starpu in the Gysela Code
JO  - ESAIM. Proceedings
PY  - 2018
SP  - 152
EP  - 178
VL  - 63
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201863152/
DO  - 10.1051/proc/201863152
LA  - en
ID  - EP_2018_63_a7
ER  - 
%0 Journal Article
%A Julien Bigot
%A Virginie Grandgirard
%A Guillaume Latu
%A Jean-Francois Mehaut
%A Luís Felipe Millani
%A Chantal Passeron
%A Steven Quinito Masnada
%A Jérôme Richard
%A Brice Videau
%T Building and Auto-Tuning Computing Kernels: Experimenting with Boast and Starpu in the Gysela Code
%J ESAIM. Proceedings
%D 2018
%P 152-178
%V 63
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201863152/
%R 10.1051/proc/201863152
%G en
%F EP_2018_63_a7
Julien Bigot; Virginie Grandgirard; Guillaume Latu; Jean-Francois Mehaut; Luís Felipe Millani; Chantal Passeron; Steven Quinito Masnada; Jérôme Richard; Brice Videau. Building and Auto-Tuning Computing Kernels: Experimenting with Boast and Starpu in the Gysela Code. ESAIM. Proceedings, Tome 63 (2018), pp. 152-178. doi : 10.1051/proc/201863152. http://geodesic.mathdoc.fr/articles/10.1051/proc/201863152/

Cité par Sources :