Measure Solutions To The Conservative Renewal Equation
ESAIM. Proceedings, Tome 62 (2018), pp. 68-78.

Voir la notice de l'article provenant de la source EDP Sciences

We prove the existence and uniqueness of measure solutions to the conservative renewal equation and analyze their long time behavior. The solutions are built by using a duality approach. This construction is well suited to apply the Doeblin’s argument which ensures the exponential relaxation of the solutions to the equilibrium.
DOI : 10.1051/proc/201862186206

Pierre Gabriel 1

1 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay, 45 Avenue des États-Unis, 78035 Versailles cedex, France;
@article{EP_2018_62_a6,
     author = {Pierre Gabriel},
     title = {Measure {Solutions} {To} {The} {Conservative} {Renewal} {Equation}},
     journal = {ESAIM. Proceedings},
     pages = {68--78},
     publisher = {mathdoc},
     volume = {62},
     year = {2018},
     doi = {10.1051/proc/201862186206},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201862186206/}
}
TY  - JOUR
AU  - Pierre Gabriel
TI  - Measure Solutions To The Conservative Renewal Equation
JO  - ESAIM. Proceedings
PY  - 2018
SP  - 68
EP  - 78
VL  - 62
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201862186206/
DO  - 10.1051/proc/201862186206
LA  - en
ID  - EP_2018_62_a6
ER  - 
%0 Journal Article
%A Pierre Gabriel
%T Measure Solutions To The Conservative Renewal Equation
%J ESAIM. Proceedings
%D 2018
%P 68-78
%V 62
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201862186206/
%R 10.1051/proc/201862186206
%G en
%F EP_2018_62_a6
Pierre Gabriel. Measure Solutions To The Conservative Renewal Equation. ESAIM. Proceedings, Tome 62 (2018), pp. 68-78. doi : 10.1051/proc/201862186206. http://geodesic.mathdoc.fr/articles/10.1051/proc/201862186206/

Cité par Sources :