Cell Division And The Pantograph Equation
ESAIM. Proceedings, Tome 62 (2018), pp. 158-167
Cet article a éte moissonné depuis la source EDP Sciences
Simple models for size structured cell populations undergoing growth and division produce a class of functional ordinary differential equations, called pantograph equations, that describe the long time asymptotics of the cell number density. Pantograph equations arise in a number of applications outside this model and, as a result, have been studied heavily over the last five decades. In this paper we review and survey the rôle of the pantograph equation in the context of cell division. In addition, for a simple case we present a method of solution based on the Mellin transform and establish uniqueness directly from the transform equation.
Affiliations des auteurs :
B. van Brunt 1 ; A. A. Zaidi 2 ; T. Lynch 1
@article{EP_2018_62_a12,
author = {B. van Brunt and A. A. Zaidi and T. Lynch},
title = {Cell {Division} {And} {The} {Pantograph} {Equation}},
journal = {ESAIM. Proceedings},
pages = {158--167},
year = {2018},
volume = {62},
doi = {10.1051/proc/201862158},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201862158/}
}
B. van Brunt; A. A. Zaidi; T. Lynch. Cell Division And The Pantograph Equation. ESAIM. Proceedings, Tome 62 (2018), pp. 158-167. doi: 10.1051/proc/201862158
Cité par Sources :