A Stochastic Model For Protrusion Activity
ESAIM. Proceedings, Tome 62 (2018), pp. 56-67.

Voir la notice de l'article provenant de la source EDP Sciences

In this work we approach cell migration under a large-scale assumption, so that the system reduces to a particle in motion. Unlike classical particle models, the cell displacement results from its internal activity: the cell velocity is a function of the (discrete) protrusive forces exerted by filopodia on the substrate. Cell polarisation ability is modeled in the feedback that the cell motion exerts on the protrusion rates: faster cells form preferentially protrusions in the direction of motion. By using the mathematical framework of structured population processes previously developed to study population dynamics [4], we introduce rigorously the mathematical model and we derive some of its fundamental properties. We perform numerical simulations on this model showing that different types of trajectories may be obtained: Brownian-like, persistent, or intermittent when the cell switches between both previous regimes. We find back the trajectories usually described in the literature for cell migration.
DOI : 10.1051/proc/201862056

Christèle Etchegaray 1 ; Nicolas Meunier 1

1 MAP5, CNRS UMR 8145, Université Paris Descartes, 45 rue des Saints Pères 75006 Paris, France.
@article{EP_2018_62_a5,
     author = {Christ\`ele Etchegaray and Nicolas Meunier},
     title = {A {Stochastic} {Model} {For} {Protrusion} {Activity}},
     journal = {ESAIM. Proceedings},
     pages = {56--67},
     publisher = {mathdoc},
     volume = {62},
     year = {2018},
     doi = {10.1051/proc/201862056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201862056/}
}
TY  - JOUR
AU  - Christèle Etchegaray
AU  - Nicolas Meunier
TI  - A Stochastic Model For Protrusion Activity
JO  - ESAIM. Proceedings
PY  - 2018
SP  - 56
EP  - 67
VL  - 62
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201862056/
DO  - 10.1051/proc/201862056
LA  - en
ID  - EP_2018_62_a5
ER  - 
%0 Journal Article
%A Christèle Etchegaray
%A Nicolas Meunier
%T A Stochastic Model For Protrusion Activity
%J ESAIM. Proceedings
%D 2018
%P 56-67
%V 62
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201862056/
%R 10.1051/proc/201862056
%G en
%F EP_2018_62_a5
Christèle Etchegaray; Nicolas Meunier. A Stochastic Model For Protrusion Activity. ESAIM. Proceedings, Tome 62 (2018), pp. 56-67. doi : 10.1051/proc/201862056. http://geodesic.mathdoc.fr/articles/10.1051/proc/201862056/

Cité par Sources :