Deterministic walk on Poisson point process
ESAIM. Proceedings, Tome 60 (2017), pp. 266-275.

Voir la notice de l'article provenant de la source EDP Sciences

A deterministic walk on a Poisson point process in Rd is an oriented graph where each point of the process is connected to only one other point following a deterministic and stationary rule of connection. In the paper we investigate the absence of percolation for such graphs and our main result is based on two assumptions. The Loop assumption ensures that any forward branch of the graph merges on a loop provided that the Poisson point process is augmented with a finite collection of well-chosen points. The Shield assumption ensures that the graph is locally determined with possible random horizons. Among the models which satisfy these general assumptions and inherit in consequence the finite cluster property, we focus on the deterministic walk to the k-th neighbour, with k any integer greater than one.
DOI : 10.1051/proc/201760266

Simon Le Stum 1

1 Laboratoire Paul Painlevé Université Lille 1
@article{EP_2017_60_a14,
     author = {Simon Le Stum},
     title = {Deterministic walk on {Poisson} point process},
     journal = {ESAIM. Proceedings},
     pages = {266--275},
     publisher = {mathdoc},
     volume = {60},
     year = {2017},
     doi = {10.1051/proc/201760266},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201760266/}
}
TY  - JOUR
AU  - Simon Le Stum
TI  - Deterministic walk on Poisson point process
JO  - ESAIM. Proceedings
PY  - 2017
SP  - 266
EP  - 275
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201760266/
DO  - 10.1051/proc/201760266
LA  - en
ID  - EP_2017_60_a14
ER  - 
%0 Journal Article
%A Simon Le Stum
%T Deterministic walk on Poisson point process
%J ESAIM. Proceedings
%D 2017
%P 266-275
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201760266/
%R 10.1051/proc/201760266
%G en
%F EP_2017_60_a14
Simon Le Stum. Deterministic walk on Poisson point process. ESAIM. Proceedings, Tome 60 (2017), pp. 266-275. doi : 10.1051/proc/201760266. http://geodesic.mathdoc.fr/articles/10.1051/proc/201760266/

Cité par Sources :