Tuning parameters in random forests
ESAIM. Proceedings, Tome 60 (2017), pp. 144-162.

Voir la notice de l'article provenant de la source EDP Sciences

Breiman's (2001) random forests are a very popular class of learning algorithms often able to produce good predictions even in high-dimensional frameworks, with no need to accurately tune its inner parameters. Unfortunately, there are no theoretical findings to support the default values used for these parameters in Breiman's algorithm. The aim of this paper is therefore to present recent theoretical results providing some insights on the role and the tuning of these parameters.
DOI : 10.1051/proc/201760144

Erwan Scornet 1

1 CMAP, École Polytechnique, Route de Saclay, 91128 Palaiseau
@article{EP_2017_60_a8,
     author = {Erwan Scornet},
     title = {Tuning parameters in random forests},
     journal = {ESAIM. Proceedings},
     pages = {144--162},
     publisher = {mathdoc},
     volume = {60},
     year = {2017},
     doi = {10.1051/proc/201760144},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201760144/}
}
TY  - JOUR
AU  - Erwan Scornet
TI  - Tuning parameters in random forests
JO  - ESAIM. Proceedings
PY  - 2017
SP  - 144
EP  - 162
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201760144/
DO  - 10.1051/proc/201760144
LA  - en
ID  - EP_2017_60_a8
ER  - 
%0 Journal Article
%A Erwan Scornet
%T Tuning parameters in random forests
%J ESAIM. Proceedings
%D 2017
%P 144-162
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201760144/
%R 10.1051/proc/201760144
%G en
%F EP_2017_60_a8
Erwan Scornet. Tuning parameters in random forests. ESAIM. Proceedings, Tome 60 (2017), pp. 144-162. doi : 10.1051/proc/201760144. http://geodesic.mathdoc.fr/articles/10.1051/proc/201760144/

Cité par Sources :