Tuning parameters in random forests
ESAIM. Proceedings, Tome 60 (2017), pp. 144-162
Cet article a éte moissonné depuis la source EDP Sciences
Breiman's (2001) random forests are a very popular class of learning algorithms often able to produce good predictions even in high-dimensional frameworks, with no need to accurately tune its inner parameters. Unfortunately, there are no theoretical findings to support the default values used for these parameters in Breiman's algorithm. The aim of this paper is therefore to present recent theoretical results providing some insights on the role and the tuning of these parameters.
@article{EP_2017_60_a8,
author = {Erwan Scornet},
title = {Tuning parameters in random forests},
journal = {ESAIM. Proceedings},
pages = {144--162},
year = {2017},
volume = {60},
doi = {10.1051/proc/201760144},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201760144/}
}
Erwan Scornet. Tuning parameters in random forests. ESAIM. Proceedings, Tome 60 (2017), pp. 144-162. doi: 10.1051/proc/201760144
Cité par Sources :