Mean field games: A toy model on an Erdös-Renyi graph.
ESAIM. Proceedings, Tome 60 (2017), pp. 1-26.

Voir la notice de l'article provenant de la source EDP Sciences

The purpose of this short article is to address a simple example of a game with a large number of players in mean field interaction when the graph connection between them is not complete but is of the Erdös-Renyi type. We study the quenched convergence of the equilibria towards the solution of a mean field game. To do so, we follow recent works on the convergence problem for mean field games and we heavily use the fact that the master equation of the asymptotic game has a strong solution.
DOI : 10.1051/proc/201760001

François Delarue 1

1 Laboratoire Dieudonné, Université Nice-Sophia Antipolis et UMR CNRS 7351, Parc Valrose, 06108 Nice Cedex 02, France.
@article{EP_2017_60_a1,
     author = {Fran\c{c}ois Delarue},
     title = {Mean field games: {A} toy model on an {Erd\"os-Renyi} graph.},
     journal = {ESAIM. Proceedings},
     pages = {1--26},
     publisher = {mathdoc},
     volume = {60},
     year = {2017},
     doi = {10.1051/proc/201760001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201760001/}
}
TY  - JOUR
AU  - François Delarue
TI  - Mean field games: A toy model on an Erdös-Renyi graph.
JO  - ESAIM. Proceedings
PY  - 2017
SP  - 1
EP  - 26
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201760001/
DO  - 10.1051/proc/201760001
LA  - en
ID  - EP_2017_60_a1
ER  - 
%0 Journal Article
%A François Delarue
%T Mean field games: A toy model on an Erdös-Renyi graph.
%J ESAIM. Proceedings
%D 2017
%P 1-26
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201760001/
%R 10.1051/proc/201760001
%G en
%F EP_2017_60_a1
François Delarue. Mean field games: A toy model on an Erdös-Renyi graph.. ESAIM. Proceedings, Tome 60 (2017), pp. 1-26. doi : 10.1051/proc/201760001. http://geodesic.mathdoc.fr/articles/10.1051/proc/201760001/

Cité par Sources :