A CLT for infinitely stratified estimators, with applications to debiased MLMC
ESAIM. Proceedings, Tome 59 (2017), pp. 104-114
Cet article a éte moissonné depuis la source EDP Sciences
This paper develops a general central limit theorem (CLT) for post-stratified Monte Carlo estimators with an associated infinite number of strata. In addition, consistency of the corresponding variance estimator is established in the same setting. With these results in hand, one can then construct asymptotically valid confidence interval procedures for such infinitely stratified estimators. We then illustrate our general theory, by applying it to the specific case of debiased multi-level Monte Carlo (MLMC) algorithms. This leads to the first asymptotically valid confidence interval procedure for such stratified debiased MLMC procedures.
Affiliations des auteurs :
Zeyu Zheng 1 ; Peter W. Glynn 1
@article{EP_2017_59_a6,
author = {Zeyu Zheng and Peter W. Glynn},
title = {A {CLT} for infinitely stratified estimators, with applications to debiased {MLMC}},
journal = {ESAIM. Proceedings},
pages = {104--114},
year = {2017},
volume = {59},
doi = {10.1051/proc/201759104},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201759104/}
}
TY - JOUR AU - Zeyu Zheng AU - Peter W. Glynn TI - A CLT for infinitely stratified estimators, with applications to debiased MLMC JO - ESAIM. Proceedings PY - 2017 SP - 104 EP - 114 VL - 59 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201759104/ DO - 10.1051/proc/201759104 LA - en ID - EP_2017_59_a6 ER -
Zeyu Zheng; Peter W. Glynn. A CLT for infinitely stratified estimators, with applications to debiased MLMC. ESAIM. Proceedings, Tome 59 (2017), pp. 104-114. doi: 10.1051/proc/201759104
Cité par Sources :