Study of Physics-Based preconditioning with High-order Galerkin discretization for hyperbolic wave problems
ESAIM. Proceedings, Tome 55 (2016), pp. 61-82
Cet article a éte moissonné depuis la source EDP Sciences
In this article, we detail the construction of a physics-based preconditioner. The Schur decomposition is the key point of the method which is tested on two hyperbolic systems : acoustic wave equations and shallow water equations without source term. Some conserved properties between preconditoner and initial operator are discussed, especially the propagation speeds of a plane wave.
Affiliations des auteurs :
Clémentine Courtès 1 ; Emmanuel Franck 2 ; Philippe Helluy 2 ; Herbert Oberlin 3
@article{EP_2016_55_a4,
author = {Cl\'ementine Court\`es and Emmanuel Franck and Philippe Helluy and Herbert Oberlin},
title = {Study of {Physics-Based} preconditioning with {High-order} {Galerkin} discretization for hyperbolic wave problems},
journal = {ESAIM. Proceedings},
pages = {61--82},
year = {2016},
volume = {55},
doi = {10.1051/proc/201655061},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201655061/}
}
TY - JOUR AU - Clémentine Courtès AU - Emmanuel Franck AU - Philippe Helluy AU - Herbert Oberlin TI - Study of Physics-Based preconditioning with High-order Galerkin discretization for hyperbolic wave problems JO - ESAIM. Proceedings PY - 2016 SP - 61 EP - 82 VL - 55 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201655061/ DO - 10.1051/proc/201655061 LA - en ID - EP_2016_55_a4 ER -
%0 Journal Article %A Clémentine Courtès %A Emmanuel Franck %A Philippe Helluy %A Herbert Oberlin %T Study of Physics-Based preconditioning with High-order Galerkin discretization for hyperbolic wave problems %J ESAIM. Proceedings %D 2016 %P 61-82 %V 55 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/201655061/ %R 10.1051/proc/201655061 %G en %F EP_2016_55_a4
Clémentine Courtès; Emmanuel Franck; Philippe Helluy; Herbert Oberlin. Study of Physics-Based preconditioning with High-order Galerkin discretization for hyperbolic wave problems. ESAIM. Proceedings, Tome 55 (2016), pp. 61-82. doi: 10.1051/proc/201655061
Cité par Sources :