An augmented Lagrangian approach to Wasserstein gradient flows and applications
ESAIM. Proceedings, Tome 54 (2016), pp. 1-17.

Voir la notice de l'article provenant de la source EDP Sciences

Taking advantage of the Benamou-Brenier dynamic formulation of optimal transport, we propose a convex formulation for each step of the JKO scheme for Wasserstein gradient flows which can be attacked by an augmented Lagrangian method which we call the ALG2-JKO scheme. We test the algorithm in particular on the porous medium equation. We also consider a semi implicit variant which enables us to treat nonlocal interactions as well as systems of interacting species. Regarding systems, we can also use the ALG2-JKO scheme for the simulation of crowd motion models with several species.
DOI : 10.1051/proc/201654001

Jean-David Benamou 1 ; Guillaume Carlier 2 ; Maxime Laborde 2

1 INRIA Paris, MOKAPLAN, rue Simone Iff, 75012, Paris, FRANCE and CEREMADE
2 CEREMADE, UMR CNRS 7534, Université Paris IX Dauphine, Pl. de Lattre de Tassigny, 75775 Paris Cedex 16, FRANCE and MOKAPLAN
@article{EP_2016_54_a1,
     author = {Jean-David Benamou and Guillaume Carlier and Maxime Laborde},
     title = {An augmented {Lagrangian} approach to {Wasserstein} gradient flows and applications},
     journal = {ESAIM. Proceedings},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {54},
     year = {2016},
     doi = {10.1051/proc/201654001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201654001/}
}
TY  - JOUR
AU  - Jean-David Benamou
AU  - Guillaume Carlier
AU  - Maxime Laborde
TI  - An augmented Lagrangian approach to Wasserstein gradient flows and applications
JO  - ESAIM. Proceedings
PY  - 2016
SP  - 1
EP  - 17
VL  - 54
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201654001/
DO  - 10.1051/proc/201654001
LA  - en
ID  - EP_2016_54_a1
ER  - 
%0 Journal Article
%A Jean-David Benamou
%A Guillaume Carlier
%A Maxime Laborde
%T An augmented Lagrangian approach to Wasserstein gradient flows and applications
%J ESAIM. Proceedings
%D 2016
%P 1-17
%V 54
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201654001/
%R 10.1051/proc/201654001
%G en
%F EP_2016_54_a1
Jean-David Benamou; Guillaume Carlier; Maxime Laborde. An augmented Lagrangian approach to Wasserstein gradient flows and applications. ESAIM. Proceedings, Tome 54 (2016), pp. 1-17. doi : 10.1051/proc/201654001. http://geodesic.mathdoc.fr/articles/10.1051/proc/201654001/

Cité par Sources :