Anisotropic Diffusion in Toroidal geometries
ESAIM. Proceedings, Tome 53 (2016), pp. 77-98
Cet article a éte moissonné depuis la source EDP Sciences
In this work, we present a new finite element framework for toroidal geometries based on a tensor product description of the 3D basis functions. In the poloidal plan, different discretizations, including B-splines and cubic Hermite-Bézier surfaces are defined, while for the toroidal direction both Fourier discretization and cubic Hermite-Bézier elements can be used. In this work, we study the MHD equilibrium by solving the Grad-Shafranov equation, which is the basis and the starting point of any MHD simulation. Then we study the anisotropic diffusion problem in both steady and unsteady states.
Affiliations des auteurs :
Ahmed Ratnani 1 ; Emmanuel Franck 2 ; Boniface Nkonga 3 ; Alina Eksaeva 4 ; Maria Kazakova 5
@article{EP_2016_53_a6,
author = {Ahmed Ratnani and Emmanuel Franck and Boniface Nkonga and Alina Eksaeva and Maria Kazakova},
title = {Anisotropic {Diffusion} in {Toroidal} geometries},
journal = {ESAIM. Proceedings},
pages = {77--98},
year = {2016},
volume = {53},
doi = {10.1051/proc/201653006},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201653006/}
}
TY - JOUR AU - Ahmed Ratnani AU - Emmanuel Franck AU - Boniface Nkonga AU - Alina Eksaeva AU - Maria Kazakova TI - Anisotropic Diffusion in Toroidal geometries JO - ESAIM. Proceedings PY - 2016 SP - 77 EP - 98 VL - 53 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201653006/ DO - 10.1051/proc/201653006 LA - en ID - EP_2016_53_a6 ER -
%0 Journal Article %A Ahmed Ratnani %A Emmanuel Franck %A Boniface Nkonga %A Alina Eksaeva %A Maria Kazakova %T Anisotropic Diffusion in Toroidal geometries %J ESAIM. Proceedings %D 2016 %P 77-98 %V 53 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/201653006/ %R 10.1051/proc/201653006 %G en %F EP_2016_53_a6
Ahmed Ratnani; Emmanuel Franck; Boniface Nkonga; Alina Eksaeva; Maria Kazakova. Anisotropic Diffusion in Toroidal geometries. ESAIM. Proceedings, Tome 53 (2016), pp. 77-98. doi: 10.1051/proc/201653006
Cité par Sources :