A Powell-Sabin finite element scheme for partial differential equations
ESAIM. Proceedings, Tome 53 (2016), pp. 64-76
Cet article a éte moissonné depuis la source EDP Sciences
In this paper are analyzed finite element methods based on Powell-Sabin splines, for the solution of partial differential equations in two dimensions. PS splines are piecewise quadratic polynomials defined on a triangulation of the domain, and exhibit a global C1 continuity. Critical issues when dealing with PS splines, and described in this work, are the construction of the shape functions and the imposition of the boundary conditions. The PS finite element method is used at first to solve an elliptic problem describing plasma equilibrium in a tokamak. Finally, a transient convective problem is also considered, and a stabilized formulation is presented.
Affiliations des auteurs :
Giorgio Giorgiani 1 ; Hervé Guillard 2 ; Boniface Nkonga 2
@article{EP_2016_53_a5,
author = {Giorgio Giorgiani and Herv\'e Guillard and Boniface Nkonga},
title = {A {Powell-Sabin} finite element scheme for partial differential equations},
journal = {ESAIM. Proceedings},
pages = {64--76},
year = {2016},
volume = {53},
doi = {10.1051/proc/201653005},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201653005/}
}
TY - JOUR AU - Giorgio Giorgiani AU - Hervé Guillard AU - Boniface Nkonga TI - A Powell-Sabin finite element scheme for partial differential equations JO - ESAIM. Proceedings PY - 2016 SP - 64 EP - 76 VL - 53 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201653005/ DO - 10.1051/proc/201653005 LA - en ID - EP_2016_53_a5 ER -
%0 Journal Article %A Giorgio Giorgiani %A Hervé Guillard %A Boniface Nkonga %T A Powell-Sabin finite element scheme for partial differential equations %J ESAIM. Proceedings %D 2016 %P 64-76 %V 53 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/201653005/ %R 10.1051/proc/201653005 %G en %F EP_2016_53_a5
Giorgio Giorgiani; Hervé Guillard; Boniface Nkonga. A Powell-Sabin finite element scheme for partial differential equations. ESAIM. Proceedings, Tome 53 (2016), pp. 64-76. doi: 10.1051/proc/201653005
Cité par Sources :