Empirical Phi-discrepancies and quasi-empirical likelihood: exponential bounds
ESAIM. Proceedings, Tome 51 (2015), pp. 212-231.

Voir la notice de l'article provenant de la source EDP Sciences

We review some recent extensions of the so-called generalized empirical likelihood method, when the Kullback distance is replaced by some general convex divergence. We propose to use, instead of empirical likelihood, some regularized form or quasi-empirical likelihood method, corresponding to a convex combination of Kullback and χ2 discrepancies. We show that for some adequate choice of the weight in this combination, the corresponding quasi-empirical likelihood is Bartlett-correctable. We also establish some non-asymptotic exponential bounds for the confidence regions obtained by using this method. These bounds are derived via bounds for self-normalized sums in the multivariate case obtained in a previous work by the authors. We also show that this kind of results may be extended to process valued infinite dimensional parameters. In this case some known results about self-normalized processes may be used to control the behavior of generalized empirical likelihood.
DOI : 10.1051/proc/201551012

Patrice Bertail 1 ; Emmanuelle Gautherat 2 ; Hugo Harari-Kermadec 3

1 MODAL’X, Université Paris-Ouest-Nanterre-La Défense
2 CREST-LS et Laboratoire REGARDS, Université de Reims Champagne Ardennes
3 Ecole Normale Supérieure de Cachan
@article{EP_2015_51_a12,
     author = {Patrice Bertail and Emmanuelle Gautherat and Hugo Harari-Kermadec},
     title = {Empirical {Phi-discrepancies} and quasi-empirical likelihood: exponential bounds},
     journal = {ESAIM. Proceedings},
     pages = {212--231},
     publisher = {mathdoc},
     volume = {51},
     year = {2015},
     doi = {10.1051/proc/201551012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201551012/}
}
TY  - JOUR
AU  - Patrice Bertail
AU  - Emmanuelle Gautherat
AU  - Hugo Harari-Kermadec
TI  - Empirical Phi-discrepancies and quasi-empirical likelihood: exponential bounds
JO  - ESAIM. Proceedings
PY  - 2015
SP  - 212
EP  - 231
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201551012/
DO  - 10.1051/proc/201551012
LA  - en
ID  - EP_2015_51_a12
ER  - 
%0 Journal Article
%A Patrice Bertail
%A Emmanuelle Gautherat
%A Hugo Harari-Kermadec
%T Empirical Phi-discrepancies and quasi-empirical likelihood: exponential bounds
%J ESAIM. Proceedings
%D 2015
%P 212-231
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201551012/
%R 10.1051/proc/201551012
%G en
%F EP_2015_51_a12
Patrice Bertail; Emmanuelle Gautherat; Hugo Harari-Kermadec. Empirical Phi-discrepancies and quasi-empirical likelihood: exponential bounds. ESAIM. Proceedings, Tome 51 (2015), pp. 212-231. doi : 10.1051/proc/201551012. http://geodesic.mathdoc.fr/articles/10.1051/proc/201551012/

Cité par Sources :