1GAT team, Faculty of Sciences and Techniques B.P. 416, Tangier, Morocco. 2Team of Mathematical Modeling and Control. Faculty of Sciences and Techniques B.P. 416, Tangier, Morocco.
ESAIM. Proceedings, Tome 49 (2015), pp. 23-36
Cet article a éte moissonné depuis la source EDP Sciences
In this work we consider the problem of stability, for distributed parameter systems, through the space variable. We give an extension of the stability radius, introduced by A. J. Pritchard and S. Townley [7, 10], to the regional case. This consists to determine the “smallest disturbance” which destabilizes regionally an exponentially stable system. We prove in particular that for a certain given class of distributed parameter systems, it is possible to destabilize regionally an exponential stable system without destabilizing it totally.
1
GAT team, Faculty of Sciences and Techniques B.P. 416, Tangier, Morocco.
2
Team of Mathematical Modeling and Control. Faculty of Sciences and Techniques B.P. 416, Tangier, Morocco.
@article{EP_2015_49_a4,
author = {A. Bernoussi and A. Bel Fekih},
title = {Regional {Stability} and {Stability} {Radius}},
journal = {ESAIM. Proceedings},
pages = {23--36},
year = {2015},
volume = {49},
doi = {10.1051/proc/201549003},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201549003/}
}
TY - JOUR
AU - A. Bernoussi
AU - A. Bel Fekih
TI - Regional Stability and Stability Radius
JO - ESAIM. Proceedings
PY - 2015
SP - 23
EP - 36
VL - 49
UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201549003/
DO - 10.1051/proc/201549003
LA - en
ID - EP_2015_49_a4
ER -
%0 Journal Article
%A A. Bernoussi
%A A. Bel Fekih
%T Regional Stability and Stability Radius
%J ESAIM. Proceedings
%D 2015
%P 23-36
%V 49
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201549003/
%R 10.1051/proc/201549003
%G en
%F EP_2015_49_a4
A. Bernoussi; A. Bel Fekih. Regional Stability and Stability Radius. ESAIM. Proceedings, Tome 49 (2015), pp. 23-36. doi: 10.1051/proc/201549003