Diffusion limit of the simplified Langevin PDF model in weakly inhomogeneous turbulence
ESAIM. Proceedings, Tome 48 (2015), pp. 400-419.

Voir la notice de l'article provenant de la source EDP Sciences

In this work, we discuss the modelling of transport in Langevin probability density function (PDF) models used to predict turbulent flows [1]. Our focus is on the diffusion limit of these models, i.e. when advection and dissipation are the only active physical processes. In this limit, we show that Langevin PDF models allow for an asymptotic expansion in terms of the ratio of the integral length to the mean gradient length. The main contribution of this expansion yields an evolution of the turbulent kinetic energy equivalent to that given by a k − ε model. In particular, the transport of kinetic energy is given by a gradient diffusion term. Interestingly, the identification between PDF and models raises a number of questions concerning the way turbulent transport is closed in PDF models. In order to validate the asymptotic solution, several numerical simulations are performed, with a Monte Carlo solver and also with a deterministic code.
DOI : 10.1051/proc/201448019

Casimir Emako 1 ; Viviana Letizia 2 ; Nadezda Petrova 3 ; Rmi Sainct 4 ; Roland Duclous 5 ; Olivier Soulard 5

1 UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
2 Univ Paris-Dauphine, UMR 7534, Laboratoire Ceremade, F-75016, Paris, France
3 ONERA, DEFA, F-91123 Palaiseau, France
4 Ecole des Ponts ParisTech, Laboratoire Cermics
5 CEA, DAM, DIF, F-91297, Arpajon, France
@article{EP_2015_48_a19,
     author = {Casimir Emako and Viviana Letizia and Nadezda Petrova and Rmi Sainct and Roland Duclous and Olivier Soulard},
     title = {Diffusion limit of the simplified {Langevin} {PDF} model in weakly inhomogeneous turbulence},
     journal = {ESAIM. Proceedings},
     pages = {400--419},
     publisher = {mathdoc},
     volume = {48},
     year = {2015},
     doi = {10.1051/proc/201448019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201448019/}
}
TY  - JOUR
AU  - Casimir Emako
AU  - Viviana Letizia
AU  - Nadezda Petrova
AU  - Rmi Sainct
AU  - Roland Duclous
AU  - Olivier Soulard
TI  - Diffusion limit of the simplified Langevin PDF model in weakly inhomogeneous turbulence
JO  - ESAIM. Proceedings
PY  - 2015
SP  - 400
EP  - 419
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201448019/
DO  - 10.1051/proc/201448019
LA  - en
ID  - EP_2015_48_a19
ER  - 
%0 Journal Article
%A Casimir Emako
%A Viviana Letizia
%A Nadezda Petrova
%A Rmi Sainct
%A Roland Duclous
%A Olivier Soulard
%T Diffusion limit of the simplified Langevin PDF model in weakly inhomogeneous turbulence
%J ESAIM. Proceedings
%D 2015
%P 400-419
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201448019/
%R 10.1051/proc/201448019
%G en
%F EP_2015_48_a19
Casimir Emako; Viviana Letizia; Nadezda Petrova; Rmi Sainct; Roland Duclous; Olivier Soulard. Diffusion limit of the simplified Langevin PDF model in weakly inhomogeneous turbulence. ESAIM. Proceedings, Tome 48 (2015), pp. 400-419. doi : 10.1051/proc/201448019. http://geodesic.mathdoc.fr/articles/10.1051/proc/201448019/

Cité par Sources :