Quantitative estimates on the periodic approximation of the corrector in stochastic homogenization
ESAIM. Proceedings, Tome 48 (2015), pp. 80-97
Cet article a éte moissonné depuis la source EDP Sciences
We establish quantitative results on the periodic approximation of the corrector equation for the stochastic homogenization of linear elliptic equations in divergence form, when the diffusion coefficients satisfy a spectral gap estimate in probability, and for d> 2. This work is based on [5], which is a complete continuum version of [6, 7] (with in addition optimal results for d = 2). The main difference with respect to the first part of [5] is that we avoid here the use of Green’s functions and more directly rely on the De Giorgi-Nash-Moser theory.
Affiliations des auteurs :
Antoine Gloria 1 ; Félix Otto 2
@article{EP_2015_48_a3,
author = {Antoine Gloria and F\'elix Otto},
title = {Quantitative estimates on the periodic approximation of the corrector in stochastic homogenization},
journal = {ESAIM. Proceedings},
pages = {80--97},
year = {2015},
volume = {48},
doi = {10.1051/proc/201448003},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201448003/}
}
TY - JOUR AU - Antoine Gloria AU - Félix Otto TI - Quantitative estimates on the periodic approximation of the corrector in stochastic homogenization JO - ESAIM. Proceedings PY - 2015 SP - 80 EP - 97 VL - 48 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201448003/ DO - 10.1051/proc/201448003 LA - en ID - EP_2015_48_a3 ER -
%0 Journal Article %A Antoine Gloria %A Félix Otto %T Quantitative estimates on the periodic approximation of the corrector in stochastic homogenization %J ESAIM. Proceedings %D 2015 %P 80-97 %V 48 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/201448003/ %R 10.1051/proc/201448003 %G en %F EP_2015_48_a3
Antoine Gloria; Félix Otto. Quantitative estimates on the periodic approximation of the corrector in stochastic homogenization. ESAIM. Proceedings, Tome 48 (2015), pp. 80-97. doi: 10.1051/proc/201448003
Cité par Sources :