Local well-posedness of the generalized Cucker-Smale model with singular kernels
ESAIM. Proceedings, Tome 47 (2014), pp. 17-35
Cet article a éte moissonné depuis la source EDP Sciences
In this paper, we study the local well-posedness of two types of generalized kinetic Cucker-Smale (in short C-S) equations. We consider two different communication weights in space with nonlinear coupling of the velocities, v | v | β − 2 for β > 3-d/2, where singularities are present either in space or in velocity. For the singular communication weight in space, ψ1(x) = 1 / | x | α with α ∈ (0,d − 1), d ≥ 1, we consider smooth velocity coupling, β ≥ 2. For the regular one, we assume ψ2(x) ∈ (Lloc∞ ∩ Liploc) (Rd) but with a singular velocity coupling β ∈ (3-d/2, 2). We also present the various dynamics of the generalized C-S particle system with the communication weights ψi,i = 1,2 when β ∈ (0,3). We provide sufficient conditions of the initial data depending on the exponent β leading to finite-time alignment or to no collisions between particles in finite time.
Affiliations des auteurs :
José A. Carrillo 1 ; Young-Pil Choi 1 ; Maxime Hauray 2
@article{EP_2014_47_a2,
author = {Jos\'e A. Carrillo and Young-Pil Choi and Maxime Hauray},
title = {Local well-posedness of the generalized {Cucker-Smale} model with singular kernels},
journal = {ESAIM. Proceedings},
pages = {17--35},
year = {2014},
volume = {47},
doi = {10.1051/proc/201447002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201447002/}
}
TY - JOUR AU - José A. Carrillo AU - Young-Pil Choi AU - Maxime Hauray TI - Local well-posedness of the generalized Cucker-Smale model with singular kernels JO - ESAIM. Proceedings PY - 2014 SP - 17 EP - 35 VL - 47 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201447002/ DO - 10.1051/proc/201447002 LA - en ID - EP_2014_47_a2 ER -
%0 Journal Article %A José A. Carrillo %A Young-Pil Choi %A Maxime Hauray %T Local well-posedness of the generalized Cucker-Smale model with singular kernels %J ESAIM. Proceedings %D 2014 %P 17-35 %V 47 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/201447002/ %R 10.1051/proc/201447002 %G en %F EP_2014_47_a2
José A. Carrillo; Young-Pil Choi; Maxime Hauray. Local well-posedness of the generalized Cucker-Smale model with singular kernels. ESAIM. Proceedings, Tome 47 (2014), pp. 17-35. doi: 10.1051/proc/201447002
Cité par Sources :