Convergence of iterates of pre-mean-type mappings
ESAIM. Proceedings, Tome 46 (2014), pp. 196-212
Cet article a éte moissonné depuis la source EDP Sciences
Pre-mean in an interval I, being defined as a function M:I2 → I such that M(x,x) = x for x ∈ I,is an essential generalization of the mean. If M and N are pre-means, a map (M,N):I2 → I2 is called pre-mean-type mapping. The problem of convergence of iterates of pre-mean type mappings of the form with s,t ∈ (0,1);p,q ∈ R, p ≠ q, where \begin{equation*} B_{s,t}^{[p,q]}=\left( \frac{sx^{p}+\left( 1-s\right) y^{p}}{tx^{q}+\left( 1-t\right) y^{q}}\right) ^{1/\left( p-q\right) },\text{ \ \ \ \ \ }x,y>0, \end{equation*} B s,t [ p,q ] = s x p + ( 1 − s ) y p t x q + ( 1 − t ) y q 1 / p − q , x,y > 0 , is considered. It is proved, in particular, that for p = 2r, q = r and s ≤ t 2s, the sequence of iterates at the point (x,y) converges to . For some s and t the iterates behave in ”chaotic” way. An application in solving a functional equation is presented.
@article{EP_2014_46_a16,
author = {Janusz Matkowski},
title = {Convergence of iterates of pre-mean-type mappings},
journal = {ESAIM. Proceedings},
pages = {196--212},
year = {2014},
volume = {46},
doi = {10.1051/proc/201446016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201446016/}
}
Janusz Matkowski. Convergence of iterates of pre-mean-type mappings. ESAIM. Proceedings, Tome 46 (2014), pp. 196-212. doi: 10.1051/proc/201446016
Cité par Sources :