A note on periods of powers
ESAIM. Proceedings, Tome 46 (2014), pp. 125-131
Cet article a éte moissonné depuis la source EDP Sciences
Let f:X → X be a continuous map defined from a topological space X into itself. We discuss the problem of analyzing and computing explicitly the set Per(fp) of periods of the p-th iterate fp from the knowledge of the set Per(f) of periods of f. In the case of interval or circle maps, that is, X = [0,1] or X = S1, this question was solved in [11]. Now, we present some remarks and advances concerning the set Per(fp) for a continuous interval map, and on the other hand we study and solve the problem when we consider σ-permutation maps, namely, when X = [0,1] k for some integer k ≥ 2 and the map has the form F(x1,x2,...,xk) = (fσ(1)(xσ(1)),fσ(2)(xσ(2)),...,fσ(k)(xσ(k))), being each fj a continuous interval map and σ a cyclic permutation of {1,2,...,k}. This paper can be seen as the continuation of [11].
Affiliations des auteurs :
J.S. Cánovas 1 ; A. Linero Bas 2
@article{EP_2014_46_a11,
author = {J.S. C\'anovas and A. Linero Bas},
title = {A note on periods of powers},
journal = {ESAIM. Proceedings},
pages = {125--131},
year = {2014},
volume = {46},
doi = {10.1051/proc/201446011},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201446011/}
}
J.S. Cánovas; A. Linero Bas. A note on periods of powers. ESAIM. Proceedings, Tome 46 (2014), pp. 125-131. doi: 10.1051/proc/201446011
Cité par Sources :