The Evolution of the Local Induction Approximation for a Regular Polygon
ESAIM. Proceedings, Tome 45 (2014), pp. 447-455
Cet article a éte moissonné depuis la source EDP Sciences
In this paper, we consider the so-called local induction approximation (LIA): $$ \Xt = \Xs\wedge\Xss, $$ X t = X s ∧ X ss , where ∧ is the usual cross product, and s denotes the arc-length parametrization. We study its evolution, taking planar regular polygons of M sides as initial data. Assuming uniqueness and bearing in mind the invariances and symmetries of the problem, we are able to fully characterize, by algebraic means, X(s,t) and its derivative, the tangent vector T(s,t), at times t which are rational multiples of 2π/M2. We show that the values at those instants are intimately related to the generalized quadratic Gauß sums.
Affiliations des auteurs :
Francisco de la Hoz 1 ; Luis Vega 2
@article{EP_2014_45_a46,
author = {Francisco de la Hoz and Luis Vega},
title = {The {Evolution} of the {Local} {Induction} {Approximation} for a {Regular} {Polygon}},
journal = {ESAIM. Proceedings},
pages = {447--455},
year = {2014},
volume = {45},
doi = {10.1051/proc/201445046},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201445046/}
}
TY - JOUR AU - Francisco de la Hoz AU - Luis Vega TI - The Evolution of the Local Induction Approximation for a Regular Polygon JO - ESAIM. Proceedings PY - 2014 SP - 447 EP - 455 VL - 45 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201445046/ DO - 10.1051/proc/201445046 LA - en ID - EP_2014_45_a46 ER -
Francisco de la Hoz; Luis Vega. The Evolution of the Local Induction Approximation for a Regular Polygon. ESAIM. Proceedings, Tome 45 (2014), pp. 447-455. doi: 10.1051/proc/201445046
Cité par Sources :