Some characterizations of a uniform ball property
ESAIM. Proceedings, Tome 45 (2014), pp. 437-446.

Voir la notice de l'article provenant de la source EDP Sciences

In 1973, Helfrich suggested a simple model to describe the shapes of vesicles: a free bending energy involving geometric quantities like curvature. However, the mathematical questions concerning the existence and the regularity of minimizers to such shape optimization problems still remain open. In this article, we consider a class of admissible shapes in which the existence of minimizers is ensured: the hypersurfaces of Rn satisfying a uniform ball condition. We prove that this property is equivalent to the notion of positive reach introduced by Federer in 1959. Then, another characterization in terms of C1,1-regularity is established for compact hypersurfaces.
DOI : 10.1051/proc/201445045

Jérémy Dalphin 1

1 Institut Elie Cartan of Lorraine UMR 7502, University of Lorraine BP 70239 54506 Vandoeuvre-les-Nancy Cedex, France
@article{EP_2014_45_a45,
     author = {J\'er\'emy Dalphin},
     title = {Some characterizations of a uniform ball property},
     journal = {ESAIM. Proceedings},
     pages = {437--446},
     publisher = {mathdoc},
     volume = {45},
     year = {2014},
     doi = {10.1051/proc/201445045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201445045/}
}
TY  - JOUR
AU  - Jérémy Dalphin
TI  - Some characterizations of a uniform ball property
JO  - ESAIM. Proceedings
PY  - 2014
SP  - 437
EP  - 446
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201445045/
DO  - 10.1051/proc/201445045
LA  - en
ID  - EP_2014_45_a45
ER  - 
%0 Journal Article
%A Jérémy Dalphin
%T Some characterizations of a uniform ball property
%J ESAIM. Proceedings
%D 2014
%P 437-446
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201445045/
%R 10.1051/proc/201445045
%G en
%F EP_2014_45_a45
Jérémy Dalphin. Some characterizations of a uniform ball property. ESAIM. Proceedings, Tome 45 (2014), pp. 437-446. doi : 10.1051/proc/201445045. http://geodesic.mathdoc.fr/articles/10.1051/proc/201445045/

Cité par Sources :