Adaptive metric-based multigrid for a Poisson problem with discontinuous coefficients,
ESAIM. Proceedings, Tome 45 (2014), pp. 410-419.

Voir la notice de l'article provenant de la source EDP Sciences

In order to solve the linear partial differential equation Au = f, we combine two methods: Full-Multigrid method and Hessian-based mesh adaptation. First, we define independently an Hessian-based mesh adaptation loop and a FMG algorithm where, at each phase, the equation is solved by a preconditioned GMRES with multigrid as preconditioner. Then we insert the adaptive loop between the FMG phases. We use this new algorithm and we compare its results with those obtained with non-adaptive FMG.
DOI : 10.1051/proc/201445042

Gautier Brèthes 1

1 INRIA Sophia Antipolis, 2004 route de Lucioles, 06902 Sophia-Antipolis, France
@article{EP_2014_45_a42,
     author = {Gautier Br\`ethes},
     title = {Adaptive metric-based multigrid for a {Poisson} problem with discontinuous coefficients,},
     journal = {ESAIM. Proceedings},
     pages = {410--419},
     publisher = {mathdoc},
     volume = {45},
     year = {2014},
     doi = {10.1051/proc/201445042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201445042/}
}
TY  - JOUR
AU  - Gautier Brèthes
TI  - Adaptive metric-based multigrid for a Poisson problem with discontinuous coefficients,
JO  - ESAIM. Proceedings
PY  - 2014
SP  - 410
EP  - 419
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201445042/
DO  - 10.1051/proc/201445042
LA  - en
ID  - EP_2014_45_a42
ER  - 
%0 Journal Article
%A Gautier Brèthes
%T Adaptive metric-based multigrid for a Poisson problem with discontinuous coefficients,
%J ESAIM. Proceedings
%D 2014
%P 410-419
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201445042/
%R 10.1051/proc/201445042
%G en
%F EP_2014_45_a42
Gautier Brèthes. Adaptive metric-based multigrid for a Poisson problem with discontinuous coefficients,. ESAIM. Proceedings, Tome 45 (2014), pp. 410-419. doi : 10.1051/proc/201445042. http://geodesic.mathdoc.fr/articles/10.1051/proc/201445042/

Cité par Sources :