Numerical methods for piecewise deterministic Markov processes with boundary
ESAIM. Proceedings, Tome 45 (2014), pp. 338-348
Cet article a éte moissonné depuis la source EDP Sciences
In this paper is described the general aspect of a numerical method for piecewise deterministic Markov processes with boundary. Under very natural hypotheses, a crucial result about uniqueness of solution of a generalized Kolmogorov equation with respect to a test function space is proved. Next we prove the existence and uniqueness of a positive solution to the finite volume scheme without result about convergence. Finally different models of transmission control protocol window-size processes are simulated to illustrate the efficiency of the numerical method for describing the evolution of the density of a piecewise deterministic Markov process with boundary. Obviously some technical aspects have been skipped for reader convenience but the full theory will be exposed in a forthcoming paper in collaboration with C. Cocozza-Thivent, R. Eymard and M. Roussignol.
@article{EP_2014_45_a35,
author = {Ludovic Gouden\`ege},
title = {Numerical methods for piecewise deterministic {Markov} processes with boundary},
journal = {ESAIM. Proceedings},
pages = {338--348},
year = {2014},
volume = {45},
doi = {10.1051/proc/201445035},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201445035/}
}
TY - JOUR AU - Ludovic Goudenège TI - Numerical methods for piecewise deterministic Markov processes with boundary JO - ESAIM. Proceedings PY - 2014 SP - 338 EP - 348 VL - 45 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201445035/ DO - 10.1051/proc/201445035 LA - en ID - EP_2014_45_a35 ER -
Ludovic Goudenège. Numerical methods for piecewise deterministic Markov processes with boundary. ESAIM. Proceedings, Tome 45 (2014), pp. 338-348. doi: 10.1051/proc/201445035
Cité par Sources :