Borel-Laplace summation method used as time integration scheme
ESAIM. Proceedings, Tome 45 (2014), pp. 318-327
Cet article a éte moissonné depuis la source EDP Sciences
A time integration method for the resolution of ordinary and partial differential equations is proposed. The method consists in computing a formal solution as a (eventually divergent) time series. Next, the Borel resummation method is applied to deduce an (sectorial) analytical solution. The speed and spectral properties of the scheme are analyzed through some examples. Applications to fluid mechanics are presented.
Affiliations des auteurs :
Ahmad Deeb 1 ; Aziz Hamdouni 1 ; Erwan Liberge 1 ; Dina Razafindralandy 1
@article{EP_2014_45_a33,
author = {Ahmad Deeb and Aziz Hamdouni and Erwan Liberge and Dina Razafindralandy},
title = {Borel-Laplace summation method used as time integration scheme},
journal = {ESAIM. Proceedings},
pages = {318--327},
year = {2014},
volume = {45},
doi = {10.1051/proc/201445033},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201445033/}
}
TY - JOUR AU - Ahmad Deeb AU - Aziz Hamdouni AU - Erwan Liberge AU - Dina Razafindralandy TI - Borel-Laplace summation method used as time integration scheme JO - ESAIM. Proceedings PY - 2014 SP - 318 EP - 327 VL - 45 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201445033/ DO - 10.1051/proc/201445033 LA - en ID - EP_2014_45_a33 ER -
%0 Journal Article %A Ahmad Deeb %A Aziz Hamdouni %A Erwan Liberge %A Dina Razafindralandy %T Borel-Laplace summation method used as time integration scheme %J ESAIM. Proceedings %D 2014 %P 318-327 %V 45 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/201445033/ %R 10.1051/proc/201445033 %G en %F EP_2014_45_a33
Ahmad Deeb; Aziz Hamdouni; Erwan Liberge; Dina Razafindralandy. Borel-Laplace summation method used as time integration scheme. ESAIM. Proceedings, Tome 45 (2014), pp. 318-327. doi: 10.1051/proc/201445033
Cité par Sources :