Shape deformation and optimal control
ESAIM. Proceedings, Tome 45 (2014), pp. 300-307.

Voir la notice de l'article provenant de la source EDP Sciences

Shape deformation analysis is concerned with determining a deformation of a given shape into another one, which is optimal for a certain cost. We provide the main ideas for a new general approach to shape deformation analysis, using the framework of optimal control theory. This point of view can be made independent from the parametrization of the shape, and allows to model general constrained shape analysis problems. The use of a infinite dimensional variant of the constrained Pontryagin Maximum Principle characterizes the optimal solutions of the shape deformation problem in a very general way.
DOI : 10.1051/proc/201445031

Sylvain Arguillère 1 ; Emmanuel Trélat 2 ; Alain Trouvé 3 ; Laurent Younès 4

1 Université Pierre et Marie Curie (Univ. Paris 6), CNRS UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
2 Université Pierre et Marie Curie (Univ. Paris 6) and Institut Universitaire de France and Team GECO Inria Saclay, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
3 Ecole Normale Supérieure de Cachan, Centre de Mathématiques et Leurs Applications, CMLA, 61 av. du Pdt Wilson, F-94235 Cachan Cedex, France
4 Johns Hopkins University, Center for Imaging Science, Department of Applied Mathematics and Statistics, Clark 324C, 3400 N. Charles st. Baltimore, MD 21218, USA
@article{EP_2014_45_a31,
     author = {Sylvain Arguill\`ere and Emmanuel Tr\'elat and Alain Trouv\'e and Laurent Youn\`es},
     title = {Shape deformation and optimal control},
     journal = {ESAIM. Proceedings},
     pages = {300--307},
     publisher = {mathdoc},
     volume = {45},
     year = {2014},
     doi = {10.1051/proc/201445031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201445031/}
}
TY  - JOUR
AU  - Sylvain Arguillère
AU  - Emmanuel Trélat
AU  - Alain Trouvé
AU  - Laurent Younès
TI  - Shape deformation and optimal control
JO  - ESAIM. Proceedings
PY  - 2014
SP  - 300
EP  - 307
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201445031/
DO  - 10.1051/proc/201445031
LA  - en
ID  - EP_2014_45_a31
ER  - 
%0 Journal Article
%A Sylvain Arguillère
%A Emmanuel Trélat
%A Alain Trouvé
%A Laurent Younès
%T Shape deformation and optimal control
%J ESAIM. Proceedings
%D 2014
%P 300-307
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201445031/
%R 10.1051/proc/201445031
%G en
%F EP_2014_45_a31
Sylvain Arguillère; Emmanuel Trélat; Alain Trouvé; Laurent Younès. Shape deformation and optimal control. ESAIM. Proceedings, Tome 45 (2014), pp. 300-307. doi : 10.1051/proc/201445031. http://geodesic.mathdoc.fr/articles/10.1051/proc/201445031/

Cité par Sources :