Shape deformation and optimal control
ESAIM. Proceedings, Tome 45 (2014), pp. 300-307
Cet article a éte moissonné depuis la source EDP Sciences
Shape deformation analysis is concerned with determining a deformation of a given shape into another one, which is optimal for a certain cost. We provide the main ideas for a new general approach to shape deformation analysis, using the framework of optimal control theory. This point of view can be made independent from the parametrization of the shape, and allows to model general constrained shape analysis problems. The use of a infinite dimensional variant of the constrained Pontryagin Maximum Principle characterizes the optimal solutions of the shape deformation problem in a very general way.
Affiliations des auteurs :
Sylvain Arguillère 1 ; Emmanuel Trélat 2 ; Alain Trouvé 3 ; Laurent Younès 4
@article{EP_2014_45_a31,
author = {Sylvain Arguill\`ere and Emmanuel Tr\'elat and Alain Trouv\'e and Laurent Youn\`es},
title = {Shape deformation and optimal control},
journal = {ESAIM. Proceedings},
pages = {300--307},
year = {2014},
volume = {45},
doi = {10.1051/proc/201445031},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201445031/}
}
TY - JOUR AU - Sylvain Arguillère AU - Emmanuel Trélat AU - Alain Trouvé AU - Laurent Younès TI - Shape deformation and optimal control JO - ESAIM. Proceedings PY - 2014 SP - 300 EP - 307 VL - 45 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201445031/ DO - 10.1051/proc/201445031 LA - en ID - EP_2014_45_a31 ER -
Sylvain Arguillère; Emmanuel Trélat; Alain Trouvé; Laurent Younès. Shape deformation and optimal control. ESAIM. Proceedings, Tome 45 (2014), pp. 300-307. doi: 10.1051/proc/201445031
Cité par Sources :