A dacorogna-moser approach to flow decomposition and minimal flow problems
ESAIM. Proceedings, Tome 45 (2014), pp. 265-274
The papers describes an easy approach, based on a classical construction by Dacorogna and Moser, to prove that optimal vector fields in some minimal flow problem linked to optimal transport models (congested traffic, branched transport, Beckmann’s problem...) are induced by a probability measure on the space of paths. This gives a new, easier, proof of a classical result by Smirnov, and allows handling optimal flows without taking care of the presence of cycles.
@article{EP_2014_45_a27,
author = {Filippo Santambrogio},
title = {A dacorogna-moser approach to flow decomposition and minimal flow problems},
journal = {ESAIM. Proceedings},
pages = {265--274},
year = {2014},
volume = {45},
doi = {10.1051/proc/201445027},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201445027/}
}
TY - JOUR AU - Filippo Santambrogio TI - A dacorogna-moser approach to flow decomposition and minimal flow problems JO - ESAIM. Proceedings PY - 2014 SP - 265 EP - 274 VL - 45 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201445027/ DO - 10.1051/proc/201445027 LA - en ID - EP_2014_45_a27 ER -
Filippo Santambrogio. A dacorogna-moser approach to flow decomposition and minimal flow problems. ESAIM. Proceedings, Tome 45 (2014), pp. 265-274. doi: 10.1051/proc/201445027
Cité par Sources :