Metastability for scalar conservation laws in a bounded domain
ESAIM. Proceedings, Tome 45 (2014), pp. 247-254
Cet article a éte moissonné depuis la source EDP Sciences
The initial-boundary-value problem for a viscous scalar conservation law in a bounded interval I = ( − ℓ,ℓ) is considered, with emphasis on the metastable dynamics, whereby the time-dependent solution develops internal transition layers that approach their steady state in an asymptotically exponentially long time interval as the viscosity coefficient ε> 0 goes to zero. We describe such behavior by deriving an ODE for the position ξ of the internal interface. The main tool of our analysis is the construction of a one-parameter family of approximate stationary solutions {Uεε(.;ξ)}ξ∈I, parametrized by the location of the shock layer ξ, to be considered as an approximate invariant manifold for the problem. By using the properties of the linearized operator at Uε, we estimate the size of the layer location.
Affiliations des auteurs :
Corrado Mascia 1, 2 ; Marta Strani 3
@article{EP_2014_45_a25,
author = {Corrado Mascia and Marta Strani},
title = {Metastability for scalar conservation laws in a bounded domain},
journal = {ESAIM. Proceedings},
pages = {247--254},
year = {2014},
volume = {45},
doi = {10.1051/proc/201445025},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201445025/}
}
TY - JOUR AU - Corrado Mascia AU - Marta Strani TI - Metastability for scalar conservation laws in a bounded domain JO - ESAIM. Proceedings PY - 2014 SP - 247 EP - 254 VL - 45 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201445025/ DO - 10.1051/proc/201445025 LA - en ID - EP_2014_45_a25 ER -
Corrado Mascia; Marta Strani. Metastability for scalar conservation laws in a bounded domain. ESAIM. Proceedings, Tome 45 (2014), pp. 247-254. doi: 10.1051/proc/201445025
Cité par Sources :