Convergence results on greedy algorithms for high-dimensional eigenvalue problems
ESAIM. Proceedings, Tome 45 (2014), pp. 148-157
Cet article a éte moissonné depuis la source EDP Sciences
In this paper, we present two greedy algorithms for the computation of the lowest eigenvalue (and an associated eigenvector) of a high-dimensional eigenvalue problem, which have been introduced and analyzed recently in a joint work with Eric Cancès and Tony Lelièvre [1]. The performance of our algorithms is illustrated on toy numerical test cases, and compared with that of another greedy algorithm for eigenvalue problems introduced by Ammar and Chinesta [13].
@article{EP_2014_45_a15,
author = {Virginie Ehrlacher},
title = {Convergence results on greedy algorithms for high-dimensional eigenvalue problems},
journal = {ESAIM. Proceedings},
pages = {148--157},
year = {2014},
volume = {45},
doi = {10.1051/proc/201445015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201445015/}
}
TY - JOUR AU - Virginie Ehrlacher TI - Convergence results on greedy algorithms for high-dimensional eigenvalue problems JO - ESAIM. Proceedings PY - 2014 SP - 148 EP - 157 VL - 45 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201445015/ DO - 10.1051/proc/201445015 LA - en ID - EP_2014_45_a15 ER -
Virginie Ehrlacher. Convergence results on greedy algorithms for high-dimensional eigenvalue problems. ESAIM. Proceedings, Tome 45 (2014), pp. 148-157. doi: 10.1051/proc/201445015
Cité par Sources :