Dissecting the circle, at random
ESAIM. Proceedings, Tome 44 (2014), pp. 129-139.

Voir la notice de l'article provenant de la source EDP Sciences

Random laminations of the disk are the continuous limits of random non-crossing configurations of regular polygons. We provide an expository account on this subject. Initiated by the work of Aldous on the Brownian triangulation, this field now possesses many characters such as the random recursive triangulation, the stable laminations and the Markovian hyperbolic triangulation of the disk. We will review the properties and constructions of these objects as well as the close relationships they enjoy with the theory of continuous random trees. Some open questions are scattered along the text.
DOI : 10.1051/proc/201444007

Nicolas Curien 1

1 CNRS et Université Paris 6. LPMA, 4 place Jussieu 75005 Paris .
@article{EP_2014_44_a7,
     author = {Nicolas Curien},
     title = {Dissecting the circle, at random},
     journal = {ESAIM. Proceedings},
     pages = {129--139},
     publisher = {mathdoc},
     volume = {44},
     year = {2014},
     doi = {10.1051/proc/201444007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201444007/}
}
TY  - JOUR
AU  - Nicolas Curien
TI  - Dissecting the circle, at random
JO  - ESAIM. Proceedings
PY  - 2014
SP  - 129
EP  - 139
VL  - 44
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201444007/
DO  - 10.1051/proc/201444007
LA  - en
ID  - EP_2014_44_a7
ER  - 
%0 Journal Article
%A Nicolas Curien
%T Dissecting the circle, at random
%J ESAIM. Proceedings
%D 2014
%P 129-139
%V 44
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201444007/
%R 10.1051/proc/201444007
%G en
%F EP_2014_44_a7
Nicolas Curien. Dissecting the circle, at random. ESAIM. Proceedings, Tome 44 (2014), pp. 129-139. doi : 10.1051/proc/201444007. http://geodesic.mathdoc.fr/articles/10.1051/proc/201444007/

Cité par Sources :