Extended generalized Lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods
ESAIM. Proceedings, Tome 43 (2013), pp. 95-107.

Voir la notice de l'article provenant de la source EDP Sciences

We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via Harten’s cell average multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge–Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution.
DOI : 10.1051/proc/201343006

M. O. Domingues 1 ; A. K. F. Gomes 2 ; S. M. Gomes 3 ; O. Mendes 4 ; B. Di Pierro 5 ; K. Schneider 6

1 Laboratório Associado de Computação e Matemática Aplicada (LAC), Coordenadoria dos Laboratórios Associados (CTE), Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas 1758, 12227-010 São José dos Campos, São Paulo, Brazil
2 Pós Graduação em Computação Aplicada, CTE, INPE 
3 Universidade Estadual de Campinas (Unicamp), IMECC, Rua Sérgio Buarque de Holanda, 651, Cidade Universitária Zeferino Vaz, 13083-859 Campinas, São Paulo, Brazil
4 Divisão de Geofísica Espacial(DGE), Coordenação de Ciências Espaciais(CEA), INPE 
5 IRPHE–CNRS, Aix–Marseille Université, 49 rue F. Joliot-Curie, 13453 Marseille Cedex 13, France
6 M2P2–CNRS & Centre de Mathématiques et d’Informatique (CMI), Aix-Marseille Université, 38 rue F. Joliot–Curie, 13451 Marseille Cedex 20, France
@article{EP_2013_43_a6,
     author = {M. O. Domingues and A. K. F. Gomes and S. M. Gomes and O. Mendes and B. Di Pierro and K. Schneider},
     title = {Extended generalized {Lagrangian} multipliers for magnetohydrodynamics using adaptive multiresolution methods},
     journal = {ESAIM. Proceedings},
     pages = {95--107},
     publisher = {mathdoc},
     volume = {43},
     year = {2013},
     doi = {10.1051/proc/201343006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201343006/}
}
TY  - JOUR
AU  - M. O. Domingues
AU  - A. K. F. Gomes
AU  - S. M. Gomes
AU  - O. Mendes
AU  - B. Di Pierro
AU  - K. Schneider
TI  - Extended generalized Lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods
JO  - ESAIM. Proceedings
PY  - 2013
SP  - 95
EP  - 107
VL  - 43
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201343006/
DO  - 10.1051/proc/201343006
LA  - en
ID  - EP_2013_43_a6
ER  - 
%0 Journal Article
%A M. O. Domingues
%A A. K. F. Gomes
%A S. M. Gomes
%A O. Mendes
%A B. Di Pierro
%A K. Schneider
%T Extended generalized Lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods
%J ESAIM. Proceedings
%D 2013
%P 95-107
%V 43
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201343006/
%R 10.1051/proc/201343006
%G en
%F EP_2013_43_a6
M. O. Domingues; A. K. F. Gomes; S. M. Gomes; O. Mendes; B. Di Pierro; K. Schneider. Extended generalized Lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods. ESAIM. Proceedings, Tome 43 (2013), pp. 95-107. doi : 10.1051/proc/201343006. http://geodesic.mathdoc.fr/articles/10.1051/proc/201343006/

Cité par Sources :