Space-only hyperbolic approximation of the Vlasov equation
ESAIM. Proceedings, Tome 43 (2013), pp. 17-36
Cet article a éte moissonné depuis la source EDP Sciences
We construct an hyperbolic approximation of the Vlasov equation in which the dependency on the velocity variable is removed. The resulting model enjoys interesting conservation and entropy properties. It can be numerically solved by standard schemes for hyperbolic systems. We present numerical results for one-dimensional classical test cases in plasma physics: Landau damping, two-stream instability.
Affiliations des auteurs :
N. Pham 1 ; P. Helluy 2 ; A. Crestetto 1, 2
@article{EP_2013_43_a2,
author = {N. Pham and P. Helluy and A. Crestetto},
title = {Space-only hyperbolic approximation of the {Vlasov} equation},
journal = {ESAIM. Proceedings},
pages = {17--36},
year = {2013},
volume = {43},
doi = {10.1051/proc/201343002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201343002/}
}
TY - JOUR AU - N. Pham AU - P. Helluy AU - A. Crestetto TI - Space-only hyperbolic approximation of the Vlasov equation JO - ESAIM. Proceedings PY - 2013 SP - 17 EP - 36 VL - 43 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201343002/ DO - 10.1051/proc/201343002 LA - en ID - EP_2013_43_a2 ER -
N. Pham; P. Helluy; A. Crestetto. Space-only hyperbolic approximation of the Vlasov equation. ESAIM. Proceedings, Tome 43 (2013), pp. 17-36. doi: 10.1051/proc/201343002
Cité par Sources :