Space-only hyperbolic approximation of the Vlasov equation
ESAIM. Proceedings, Tome 43 (2013), pp. 17-36.

Voir la notice de l'article provenant de la source EDP Sciences

We construct an hyperbolic approximation of the Vlasov equation in which the dependency on the velocity variable is removed. The resulting model enjoys interesting conservation and entropy properties. It can be numerically solved by standard schemes for hyperbolic systems. We present numerical results for one-dimensional classical test cases in plasma physics: Landau damping, two-stream instability.
DOI : 10.1051/proc/201343002

N. Pham 1 ; P. Helluy 2 ; A. Crestetto 1, 2

1 IRMA, 7 rue Descartes, 67000 Strasbourg 
2 Inria TONUS 
@article{EP_2013_43_a2,
     author = {N. Pham and P. Helluy and A. Crestetto},
     title = {Space-only hyperbolic approximation of the {Vlasov} equation},
     journal = {ESAIM. Proceedings},
     pages = {17--36},
     publisher = {mathdoc},
     volume = {43},
     year = {2013},
     doi = {10.1051/proc/201343002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201343002/}
}
TY  - JOUR
AU  - N. Pham
AU  - P. Helluy
AU  - A. Crestetto
TI  - Space-only hyperbolic approximation of the Vlasov equation
JO  - ESAIM. Proceedings
PY  - 2013
SP  - 17
EP  - 36
VL  - 43
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201343002/
DO  - 10.1051/proc/201343002
LA  - en
ID  - EP_2013_43_a2
ER  - 
%0 Journal Article
%A N. Pham
%A P. Helluy
%A A. Crestetto
%T Space-only hyperbolic approximation of the Vlasov equation
%J ESAIM. Proceedings
%D 2013
%P 17-36
%V 43
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201343002/
%R 10.1051/proc/201343002
%G en
%F EP_2013_43_a2
N. Pham; P. Helluy; A. Crestetto. Space-only hyperbolic approximation of the Vlasov equation. ESAIM. Proceedings, Tome 43 (2013), pp. 17-36. doi : 10.1051/proc/201343002. http://geodesic.mathdoc.fr/articles/10.1051/proc/201343002/

Cité par Sources :