On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems
ESAIM. Proceedings, Tome 41 (2013), pp. 15-58
Cet article a éte moissonné depuis la source EDP Sciences
This article deals with the problem of computing numerical approximations of null-controls for parabolic equations or systems by using the Hilbert Uniqueness Method (HUM). We mainly review recent results on this subject but we also provide new elements to emphasize the main ideas underlying the penalised HUM approach which is at the heart of the methods used in practice. We give many numerical illustrations.
@article{EP_2013_41_a2,
author = {F. Boyer},
title = {On the penalised {HUM} approach and its applications to the numerical approximation of null-controls for parabolic problems},
journal = {ESAIM. Proceedings},
pages = {15--58},
year = {2013},
volume = {41},
doi = {10.1051/proc/201341002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201341002/}
}
TY - JOUR AU - F. Boyer TI - On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems JO - ESAIM. Proceedings PY - 2013 SP - 15 EP - 58 VL - 41 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201341002/ DO - 10.1051/proc/201341002 LA - en ID - EP_2013_41_a2 ER -
%0 Journal Article %A F. Boyer %T On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems %J ESAIM. Proceedings %D 2013 %P 15-58 %V 41 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/201341002/ %R 10.1051/proc/201341002 %G en %F EP_2013_41_a2
F. Boyer. On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems. ESAIM. Proceedings, Tome 41 (2013), pp. 15-58. doi: 10.1051/proc/201341002
Cité par Sources :