On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems
ESAIM. Proceedings, Tome 41 (2013), pp. 15-58.

Voir la notice de l'article provenant de la source EDP Sciences

This article deals with the problem of computing numerical approximations of null-controls for parabolic equations or systems by using the Hilbert Uniqueness Method (HUM). We mainly review recent results on this subject but we also provide new elements to emphasize the main ideas underlying the penalised HUM approach which is at the heart of the methods used in practice. We give many numerical illustrations.
DOI : 10.1051/proc/201341002

F. Boyer 1

1 Aix Marseille Université, CNRS, Centrale Marseille, LATP, UMR 7353, 13453 Marseille, FRANCE
@article{EP_2013_41_a2,
     author = {F. Boyer},
     title = {On the penalised {HUM} approach and its applications to the numerical approximation of null-controls for parabolic problems},
     journal = {ESAIM. Proceedings},
     pages = {15--58},
     publisher = {mathdoc},
     volume = {41},
     year = {2013},
     doi = {10.1051/proc/201341002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201341002/}
}
TY  - JOUR
AU  - F. Boyer
TI  - On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems
JO  - ESAIM. Proceedings
PY  - 2013
SP  - 15
EP  - 58
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201341002/
DO  - 10.1051/proc/201341002
LA  - en
ID  - EP_2013_41_a2
ER  - 
%0 Journal Article
%A F. Boyer
%T On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems
%J ESAIM. Proceedings
%D 2013
%P 15-58
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201341002/
%R 10.1051/proc/201341002
%G en
%F EP_2013_41_a2
F. Boyer. On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems. ESAIM. Proceedings, Tome 41 (2013), pp. 15-58. doi : 10.1051/proc/201341002. http://geodesic.mathdoc.fr/articles/10.1051/proc/201341002/

Cité par Sources :