Invariant graphs of functions for the mean-type mappings
ESAIM. Proceedings, Tome 36 (2012), pp. 209-216
Cet article a éte moissonné depuis la source EDP Sciences
Let I be a real interval, J a subinterval of I, p ≥ 2 an integer number, and M1, ... , Mp : Ip → I the continuous means. We consider the problem of invariance of the graphs of functions ϕ : Jp−1 → I with respect to the mean-type mapping M = (M1, ... , Mp).Applying a result on the existence and uniqueness of an M -invariant mean [7], we prove that if the graph of a continuous function ϕ : Jp−1 → I is M-invariant, then ϕ satisfies a simple functional equation. As a conclusion we obtain a theorem which, in particular, allows to determine all the continuous and decreasing in each variable functions ϕ of the M-invariant graphs. This improves some recent results on invariant curves [8] where the case p = 2 is considered.
@article{EP_2012_36_a17,
author = {Janusz Matkowski},
title = {Invariant graphs of functions for the mean-type mappings},
journal = {ESAIM. Proceedings},
pages = {209--216},
year = {2012},
volume = {36},
doi = {10.1051/proc/201236017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201236017/}
}
Janusz Matkowski. Invariant graphs of functions for the mean-type mappings. ESAIM. Proceedings, Tome 36 (2012), pp. 209-216. doi: 10.1051/proc/201236017
Cité par Sources :