On the helix equation
ESAIM. Proceedings, Tome 36 (2012), pp. 197-208
Cet article a éte moissonné depuis la source EDP Sciences
This paper is devoted to the helices processes, i.e. the solutions H : ℝ × Ω → ℝd, (t, ω) ↦ H(t, ω) of the helix equation \begin{eqnarray} H(0,\o)=0; \quad H(s+t,\o)= H(s,\Phi(t,\o)) +H(t,\o)\nonumber \end{eqnarray} H ( 0 ,ω ) = 0 ; H ( s + t,ω ) = H ( s, Φ ( t,ω ) ) + H ( t,ω ) where Φ : ℝ × Ω → Ω, (t, ω) ↦ Φ(t, ω) is a dynamical system on a measurable space (Ω, ℱ).More precisely, we investigate dominated solutions and non differentiable solutions of the helix equation. For the last case, the Wiener helix plays a fundamental role. Moreover, some relations with the cocycle equation defined by Φ, are investigated.
Affiliations des auteurs :
Mohamed Hmissi 1 ; Imene Ben Salah 1 ; Hajer Taouil 1
@article{EP_2012_36_a16,
author = {Mohamed Hmissi and Imene Ben Salah and Hajer Taouil},
title = {On the helix equation},
journal = {ESAIM. Proceedings},
pages = {197--208},
year = {2012},
volume = {36},
doi = {10.1051/proc/201236016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201236016/}
}
Mohamed Hmissi; Imene Ben Salah; Hajer Taouil. On the helix equation. ESAIM. Proceedings, Tome 36 (2012), pp. 197-208. doi: 10.1051/proc/201236016
Cité par Sources :