Organizing centers in parameter space of discontinuous 1D maps. The case of increasing/decreasing branches
ESAIM. Proceedings, Tome 36 (2012), pp. 106-120
Cet article a éte moissonné depuis la source EDP Sciences
This work contributes to classify the dynamic behaviors of piecewise smooth systems in which border collision bifurcations characterize the qualitative changes in the dynamics. A central point of our investigation is the intersection of two border collision bifurcation curves in a parameter plane. This problem is also associated with the continuity breaking in a fixed point of a piecewise smooth map. We will relax the hypothesis needed in [4] where it was proved that in the case of an increasing/decreasing contracting functions on the left/right side of a border point, at such a crossing point, we have a big-bang bifurcation, from which infinitely many border collision bifurcation curves are issuing.
Affiliations des auteurs :
Laura Gardini 1 ; Viktor Avrutin 2 ; Michael Schanz 2 ; Albert Granados 2 ; Iryna Sushko 3
@article{EP_2012_36_a9,
author = {Laura Gardini and Viktor Avrutin and Michael Schanz and Albert Granados and Iryna Sushko},
title = {Organizing centers in parameter space of discontinuous {1D} maps. {The} case of increasing/decreasing branches},
journal = {ESAIM. Proceedings},
pages = {106--120},
year = {2012},
volume = {36},
doi = {10.1051/proc/201236009},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201236009/}
}
TY - JOUR AU - Laura Gardini AU - Viktor Avrutin AU - Michael Schanz AU - Albert Granados AU - Iryna Sushko TI - Organizing centers in parameter space of discontinuous 1D maps. The case of increasing/decreasing branches JO - ESAIM. Proceedings PY - 2012 SP - 106 EP - 120 VL - 36 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201236009/ DO - 10.1051/proc/201236009 LA - en ID - EP_2012_36_a9 ER -
%0 Journal Article %A Laura Gardini %A Viktor Avrutin %A Michael Schanz %A Albert Granados %A Iryna Sushko %T Organizing centers in parameter space of discontinuous 1D maps. The case of increasing/decreasing branches %J ESAIM. Proceedings %D 2012 %P 106-120 %V 36 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/201236009/ %R 10.1051/proc/201236009 %G en %F EP_2012_36_a9
Laura Gardini; Viktor Avrutin; Michael Schanz; Albert Granados; Iryna Sushko. Organizing centers in parameter space of discontinuous 1D maps. The case of increasing/decreasing branches. ESAIM. Proceedings, Tome 36 (2012), pp. 106-120. doi: 10.1051/proc/201236009
Cité par Sources :