Gibbs-Markov-Young structures, ,
ESAIM. Proceedings, Tome 36 (2012), pp. 61-67.

Voir la notice de l'article provenant de la source EDP Sciences

We discuss the geometric structures defined by Young in [9, 10], which are used to prove the existence of an ergodic absolutely continuous invariant probability measure and to study the decay of correlations in expanding or hyperbolic systems on large parts.
DOI : 10.1051/proc/201236006

Carla L. Dias 1

1 Instituto Politécnico de Portalegre, ESTG, Lugar da Abadessa, Apartado 148, 7301-901 Portalegre, Portugal
@article{EP_2012_36_a6,
     author = {Carla L. Dias},
     title = {Gibbs-Markov-Young structures, ,},
     journal = {ESAIM. Proceedings},
     pages = {61--67},
     publisher = {mathdoc},
     volume = {36},
     year = {2012},
     doi = {10.1051/proc/201236006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201236006/}
}
TY  - JOUR
AU  - Carla L. Dias
TI  - Gibbs-Markov-Young structures, ,
JO  - ESAIM. Proceedings
PY  - 2012
SP  - 61
EP  - 67
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201236006/
DO  - 10.1051/proc/201236006
LA  - en
ID  - EP_2012_36_a6
ER  - 
%0 Journal Article
%A Carla L. Dias
%T Gibbs-Markov-Young structures, ,
%J ESAIM. Proceedings
%D 2012
%P 61-67
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201236006/
%R 10.1051/proc/201236006
%G en
%F EP_2012_36_a6
Carla L. Dias. Gibbs-Markov-Young structures, ,. ESAIM. Proceedings, Tome 36 (2012), pp. 61-67. doi : 10.1051/proc/201236006. http://geodesic.mathdoc.fr/articles/10.1051/proc/201236006/

Cité par Sources :