Stabilité sous condition CFL non linéaire
ESAIM. Proceedings, Tome 35 (2012), pp. 114-121
Cet article a éte moissonné depuis la source EDP Sciences
We present a basic althought little known numerical stability condition: for convection equations, the von Neumann stability constraint ∥un + 1∥L2 ≤ (1 + C Δt) ∥un∥L2 drives to the stability condition Δt ≤ CΔxα with where p is an integer linked to the stability domain of the time scheme and q ≥ p an integer linked to the upwind property of the space discretization (in the centered case we have q = +∞ and ).
Affiliations des auteurs :
Erwan Deriaz 1 ; Dmitry Kolomenskiy 2
@article{EP_2012_35_a7,
author = {Erwan Deriaz and Dmitry Kolomenskiy},
title = {Stabilit\'e sous condition {CFL} non lin\'eaire},
journal = {ESAIM. Proceedings},
pages = {114--121},
year = {2012},
volume = {35},
doi = {10.1051/proc/201235007},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201235007/}
}
Erwan Deriaz; Dmitry Kolomenskiy. Stabilité sous condition CFL non linéaire. ESAIM. Proceedings, Tome 35 (2012), pp. 114-121. doi: 10.1051/proc/201235007
Cité par Sources :