Adaptive multiresolution methods
ESAIM. Proceedings, Tome 34 (2011), pp. 1-96.

Voir la notice de l'article provenant de la source EDP Sciences

These lecture notes present adaptive multiresolution schemes for evolutionary PDEs in Cartesian geometries. The discretization schemes are based either on finite volume or finite difference schemes. The concept of multiresolution analyses, including Harten’s approach for point and cell averages, is described in some detail. Then the sparse point representation method is discussed. Different strategies for adaptive time-stepping, like local scale dependent time stepping and time step control, are presented. Numerous numerical examples in one, two and three space dimensions validate the adaptive schemes and illustrate the accuracy and the gain in computational efficiency in terms of CPU time and memory requirements. Another aspect, modeling of turbulent flows using multiresolution decompositions, the so-called Coherent Vortex Simulation approach is also described and examples are given for computations of three-dimensional weakly compressible mixing layers. Most of the material concerning applications to PDEs is assembled and adapted from previous publications [27, 31, 32, 34, 67, 69].
DOI : 10.1051/proc/201134001

Margarete O. Domingues 1 ; Sônia M. Gomes 2 ; Olivier Roussel 3 ; Kai Schneider 4

1 Laboratório Associado de Computação e Matemática Aplicada (LAC), Coordenadoria dos Laboratórios Associados (CTE), Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas 1758, 12227-010 São José dos Campos, São Paulo, Brazil
2 Instituto de Matemática, Estatística e Computação Científica (IMECC), Universidade Estadual de Campinas (Unicamp) , R. Sérgio Buarque de Holanda 651, 13083-970 Campinas, São Paulo, Brazil
3 Centre de Mathématiques et Leurs Applications (CMLA), Ecole Normale Supérieure de Cachan, 61 avenue du President Wilson, 94235 Cachan cedex, France
4 Laboratoire de Mécanique, Modelisation et Procédés Propres (M2P2), CNRS, and Centre de Mathétiques e d’Informatique (CMI), Université de Provence, 39 rue F. Joliot-Curie, 13451 Marseille Cedex 13, France
@article{EP_2011_34_a1,
     author = {Margarete O. Domingues and S\^onia M. Gomes and Olivier Roussel and Kai Schneider},
     title = {Adaptive multiresolution methods},
     journal = {ESAIM. Proceedings},
     pages = {1--96},
     publisher = {mathdoc},
     volume = {34},
     year = {2011},
     doi = {10.1051/proc/201134001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201134001/}
}
TY  - JOUR
AU  - Margarete O. Domingues
AU  - Sônia M. Gomes
AU  - Olivier Roussel
AU  - Kai Schneider
TI  - Adaptive multiresolution methods
JO  - ESAIM. Proceedings
PY  - 2011
SP  - 1
EP  - 96
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201134001/
DO  - 10.1051/proc/201134001
LA  - en
ID  - EP_2011_34_a1
ER  - 
%0 Journal Article
%A Margarete O. Domingues
%A Sônia M. Gomes
%A Olivier Roussel
%A Kai Schneider
%T Adaptive multiresolution methods
%J ESAIM. Proceedings
%D 2011
%P 1-96
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201134001/
%R 10.1051/proc/201134001
%G en
%F EP_2011_34_a1
Margarete O. Domingues; Sônia M. Gomes; Olivier Roussel; Kai Schneider. Adaptive multiresolution methods. ESAIM. Proceedings, Tome 34 (2011), pp. 1-96. doi : 10.1051/proc/201134001. http://geodesic.mathdoc.fr/articles/10.1051/proc/201134001/

Cité par Sources :