Extension of ALE methodology to unstructured conical meshes
ESAIM. Proceedings, Tome 32 (2011), pp. 31-55.

Voir la notice de l'article provenant de la source EDP Sciences

We propose a bi-dimensional finite volume extension of a continuous ALE method on unstructured cells whose edges are parameterized by rational quadratic Bezier curves. For each edge, the control point possess a weight that permits to represent any conic (see for example [LIGACH]) and thanks to [WAGUSEDE,WAGU], we are able to compute the exact area of our cells. We then give an extension of scheme for remapping step based on volume fluxing [MARSHA] and self-intersection flux [ALE2DHAL]. For the rezoning phase, we propose a three step process based on moving nodes, followed by control point and weight re-adjustment. Finally, for the hydrodynamic step, we present the GLACE scheme [GLACE] extension (at first-order) on conic cell using the same formalism. We only propose some preliminary first-order simulations for each steps: Remap, Pure Lagrangian and finally ALE (rezoning and remapping).
DOI : 10.1051/proc/2011011

Benjamin Boutin 1 ; Erwan Deriaz 2 ; Philippe Hoch 3 ; Pierre Navaro 4

1 IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
2 M2P2 - UMR-6181 CNRS IMT La Jetée Technopôle de Château-Gombert, 38 Rue Frédéric Joliot-Curie, 13451 MARSEILLE Cedex 20, France
3 Corresponding author: CEA, DAM, DIF, Bruyères-le-Chatel, F-91297 Arpajon Cedex, France
4 IRMA, 7 rue René Descartes, 67084 Strasbourg Cedex, France
@article{EP_2011_32_a4,
     author = {Benjamin Boutin and Erwan Deriaz and Philippe Hoch and Pierre Navaro},
     title = {Extension of {ALE} methodology to unstructured conical meshes},
     journal = {ESAIM. Proceedings},
     pages = {31--55},
     publisher = {mathdoc},
     volume = {32},
     year = {2011},
     doi = {10.1051/proc/2011011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/2011011/}
}
TY  - JOUR
AU  - Benjamin Boutin
AU  - Erwan Deriaz
AU  - Philippe Hoch
AU  - Pierre Navaro
TI  - Extension of ALE methodology to unstructured conical meshes
JO  - ESAIM. Proceedings
PY  - 2011
SP  - 31
EP  - 55
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/2011011/
DO  - 10.1051/proc/2011011
LA  - en
ID  - EP_2011_32_a4
ER  - 
%0 Journal Article
%A Benjamin Boutin
%A Erwan Deriaz
%A Philippe Hoch
%A Pierre Navaro
%T Extension of ALE methodology to unstructured conical meshes
%J ESAIM. Proceedings
%D 2011
%P 31-55
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/2011011/
%R 10.1051/proc/2011011
%G en
%F EP_2011_32_a4
Benjamin Boutin; Erwan Deriaz; Philippe Hoch; Pierre Navaro. Extension of ALE methodology to unstructured conical meshes. ESAIM. Proceedings, Tome 32 (2011), pp. 31-55. doi : 10.1051/proc/2011011. http://geodesic.mathdoc.fr/articles/10.1051/proc/2011011/

Cité par Sources :