Asymptotic-Preserving scheme for a two-fluid Euler-Lorentz model
ESAIM. Proceedings, Tome 32 (2011), pp. 18-22
Cet article a éte moissonné depuis la source EDP Sciences
The present work is devoted to the simulation of a strongly magnetized plasma as a mixture of an ion fluid and an electron fluid. For simplicity reasons, we assume that each fluid is isothermal and is modelized by Euler equations coupled with a term representing the Lorentz force, and we assume that both Euler systems are coupled through a quasi-neutrality constraint of the form ni = ne. The numerical method which is described in the present document is based on an asymptotic-preserving time semi-discretization of a variant of this two-fluid Euler-Lorentz model which is based on a small perturbation of the quasi-neutrality constraint.
Affiliations des auteurs :
Stéphane Brull 1 ; Pierre Degond 2 ; Fabrice Deluzet 2 ; Alexandre Mouton 3
@article{EP_2011_32_a2,
author = {St\'ephane Brull and Pierre Degond and Fabrice Deluzet and Alexandre Mouton},
title = {Asymptotic-Preserving scheme for a two-fluid {Euler-Lorentz} model},
journal = {ESAIM. Proceedings},
pages = {18--22},
year = {2011},
volume = {32},
doi = {10.1051/proc/2011009},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/2011009/}
}
TY - JOUR AU - Stéphane Brull AU - Pierre Degond AU - Fabrice Deluzet AU - Alexandre Mouton TI - Asymptotic-Preserving scheme for a two-fluid Euler-Lorentz model JO - ESAIM. Proceedings PY - 2011 SP - 18 EP - 22 VL - 32 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/2011009/ DO - 10.1051/proc/2011009 LA - en ID - EP_2011_32_a2 ER -
%0 Journal Article %A Stéphane Brull %A Pierre Degond %A Fabrice Deluzet %A Alexandre Mouton %T Asymptotic-Preserving scheme for a two-fluid Euler-Lorentz model %J ESAIM. Proceedings %D 2011 %P 18-22 %V 32 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/2011009/ %R 10.1051/proc/2011009 %G en %F EP_2011_32_a2
Stéphane Brull; Pierre Degond; Fabrice Deluzet; Alexandre Mouton. Asymptotic-Preserving scheme for a two-fluid Euler-Lorentz model. ESAIM. Proceedings, Tome 32 (2011), pp. 18-22. doi: 10.1051/proc/2011009
Cité par Sources :