Random Walks and Trees
ESAIM. Proceedings, Tome 31 (2011), pp. 1-39.

Voir la notice de l'article provenant de la source EDP Sciences

These notes provide an elementary and self-contained introduction to branching random walks. Section 1 gives a brief overview of Galton–Watson trees, whereas Section 2 presents the classical law of large numbers for branching random walks. These two short sections are not exactly indispensable, but they introduce the idea of using size-biased trees, thus giving motivations and an avant-goût to the main part, Section 3, where branching random walks are studied from a deeper point of view, and are connected to the model of directed polymers on a tree. Tree-related random processes form a rich and exciting research subject. These notes cover only special topics. For a general account, we refer to the St-Flour lecture notes of Peres [47] and to the forthcoming book of Lyons and Peres [42], as well as to Duquesne and Le Gall [23] and Le Gall [37] for continuous random trees.
DOI : 10.1051/proc/2011002

Zhan Shi 1

1 Université Paris VI, Laboratoire de Probabilités et Modèles Aléatoires, 4 place Jussieu, 75252 Paris Cedex 05, France.
@article{EP_2011_31_a1,
     author = {Zhan Shi},
     title = {Random {Walks} and {Trees}},
     journal = {ESAIM. Proceedings},
     pages = {1--39},
     publisher = {mathdoc},
     volume = {31},
     year = {2011},
     doi = {10.1051/proc/2011002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/2011002/}
}
TY  - JOUR
AU  - Zhan Shi
TI  - Random Walks and Trees
JO  - ESAIM. Proceedings
PY  - 2011
SP  - 1
EP  - 39
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/2011002/
DO  - 10.1051/proc/2011002
LA  - en
ID  - EP_2011_31_a1
ER  - 
%0 Journal Article
%A Zhan Shi
%T Random Walks and Trees
%J ESAIM. Proceedings
%D 2011
%P 1-39
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/2011002/
%R 10.1051/proc/2011002
%G en
%F EP_2011_31_a1
Zhan Shi. Random Walks and Trees. ESAIM. Proceedings, Tome 31 (2011), pp. 1-39. doi : 10.1051/proc/2011002. http://geodesic.mathdoc.fr/articles/10.1051/proc/2011002/

Cité par Sources :