Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball
ESAIM. Proceedings, Tome 27 (2009), pp. 311-321.

Voir la notice de l'article provenant de la source EDP Sciences

In this article we deal with the problem of distributing two conducting materials in a given domain, with their proportions being fixed, so as to minimize the first eigenvalue of a Dirichlet operator. When the design region is a ball, it is known that there is an optimal distribution of materials which does not involve the mixing of the materials. However, the optimal configuration even in this simple case is not known. As a step in the resolution of this problem, in this paper, we develop the shape derivative analysis for this two-phase eigenvalue problem in a general domain. We also obtain a formula for the shape derivative in the form of a boundary integral and obtain a simple expression for it in the case of a ball. We then present some numerical calculations to support our conjecture that the optimal distribution in a ball should consist in putting the material with higher conductivity in a concentric ball at the centre.
DOI : 10.1051/proc/2009034

Carlos Conca 1 ; Rajesh Mahadevan 2 ; Leon Sanz 1

1 CMM-DIM, FCFM, Universidad de Chile, CHILE;
2 Departamento de Matemática, Universidad de Concepción, CHILE;
@article{EP_2009_27_a18,
     author = {Carlos Conca and Rajesh Mahadevan and Leon Sanz},
     title = {Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball},
     journal = {ESAIM. Proceedings},
     pages = {311--321},
     publisher = {mathdoc},
     volume = {27},
     year = {2009},
     doi = {10.1051/proc/2009034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/2009034/}
}
TY  - JOUR
AU  - Carlos Conca
AU  - Rajesh Mahadevan
AU  - Leon Sanz
TI  - Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball
JO  - ESAIM. Proceedings
PY  - 2009
SP  - 311
EP  - 321
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/2009034/
DO  - 10.1051/proc/2009034
LA  - en
ID  - EP_2009_27_a18
ER  - 
%0 Journal Article
%A Carlos Conca
%A Rajesh Mahadevan
%A Leon Sanz
%T Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball
%J ESAIM. Proceedings
%D 2009
%P 311-321
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/2009034/
%R 10.1051/proc/2009034
%G en
%F EP_2009_27_a18
Carlos Conca; Rajesh Mahadevan; Leon Sanz. Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball. ESAIM. Proceedings, Tome 27 (2009), pp. 311-321. doi : 10.1051/proc/2009034. http://geodesic.mathdoc.fr/articles/10.1051/proc/2009034/

Cité par Sources :